No CrossRef data available.
Article contents
Fourier transforms and harmonic functions
Published online by Cambridge University Press: 09 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The purpose of this paper is to present a novel proof of a well-known relationship between functions in harmonic subspaces of L2(Rn) ∪ L1 (Rn) and their Fourier transforms. The proof uses a characterisation of spherical harmonics given by Hecke and a method developed by the author in a previous paper.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1984
References
[1]Cassels, J. and Frohlich, A., Algebraic number theory (Academic Press, London, 1969).Google Scholar
[2]Hecke, E., Mathematische Werke, 2nd ed. (Vanderhoeck and Ruprecht, Gottingen, 1970).Google Scholar
[3]Muller, C., Spherical harmonics, Springer-Verlag Lecture Notes 17 (Springer-Verlag, Berlin).CrossRefGoogle Scholar
[4]Ormerod, N., ‘Fourier transforms of radial functions’, J. Math. Anal. Appl. 69 (1979), 559–562.CrossRefGoogle Scholar
[5]Schoeneberg, B., Elliptic modular functions (Springer-Verlag, Berlin, 1974).CrossRefGoogle Scholar
[6]Stein, E. and Weiss, G., Inroduction to Fourier analysis on Euclidean spaces (Princeton Univ. Press, Princeton, N. J., 1971).Google Scholar
You have
Access