Article contents
A generalized Fourier transformation for L1(G)-Modules
Published online by Cambridge University Press: 09 April 2009
Abstract
Let G be a compact abelian group with dual Ĝ and let K be a Banach L1 (G)-module. We introduce the notion of character convolution transformation of K which reduces to ordinary Fourier or Fourier-Stieltjes transformation when K is one of the spaces Lp(G), M(G). We show that the question of what maps Ĝ → K extend to multipliers of K is a question of asking for descriptions of the character convolution transforms. In this setting some results of Helson-Edward and Schoenberg-Eberlein find generalizations, as do some classical results, including the inversion formula and the Parseval relation. We then apply these results to transformation groups, obtaining a variant of a theorem of Bochner and an extension of a theorem of Ryan.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1984
References
- 1
- Cited by