Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T01:24:08.822Z Has data issue: false hasContentIssue false

GEOMETRIC PHASES IN THE QUANTISATION OF BOSONS AND FERMIONS

Published online by Cambridge University Press:  29 June 2011

SIYE WU*
Affiliation:
Department of Mathematics, University of Hong Kong, Pokfulam Road, Hong Kong, China (email: swu@maths.hku.hk)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

After reviewing geometric quantisation of linear bosonic and fermionic systems, we study the holonomy of the projectively flat connection on the bundle of Hilbert spaces over the space of compatible complex structures and relate it to the Maslov index and its various generalisations. We also consider bosonic and fermionic harmonic oscillators parametrised by compatible complex structures and compare Berry’s phase with the above holonomy.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Axelrod, S., Della Pietra, S. and Witten, E., ‘Geometric quantization of Chern–Simons gauge theory’, J. Differential Geom. 33 (1991), 787902.CrossRefGoogle Scholar
[2]Berry, M. V., ‘Quantal phase factors accompanying adiabatic changes’, Proc. R. Soc. Lond. Ser. A 392 (1984), 4557.Google Scholar
[3]Berry, M. V., ‘Classical adiabatic angles and quantal adiabatic phase’, J. Phys. A 18 (1985), 1527.CrossRefGoogle Scholar
[4]Clerc, J. L. and Ørsted, B., ‘The Maslov index revisited’, Transform. Groups 6 (2001), 303320.CrossRefGoogle Scholar
[5]Clerc, J. L. and Ørsted, B., ‘The Gromov norm of the Kaehler class and the Maslov index’, Asian J. Math. 7 (2003), 269295; ‘Corrigendum’, Asian J. Math. 8 (2004), 391–393.CrossRefGoogle Scholar
[6]Dominic, A. and Toledo, D., ‘The Gromov norm of the Kaehler class of symmetric domains’, Math. Ann. 276 (1987), 425432.CrossRefGoogle Scholar
[7]Hua, L.-K., Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains (Science Press, Peking, 1958), English translation (American Mathematical Society, Providence, RI, 1963).Google Scholar
[8]Kirwin, W. D. and Wu, S., ‘Geometric quantization, parallel transport and the Fourier transform’, Comm. Math. Phys. 266 (2006), 577594.CrossRefGoogle Scholar
[9]Kostant, B., ‘Graded manifolds, graded Lie theory, and prequantization’, in: Differential Geometrical Methods in Mathematical Physics Proc. Sympos., Univiversity of Bonn, Bonn, 1975, Lecture Notes in Mathematics, 570 (Springer, Berlin, 1977), pp. 177306.CrossRefGoogle Scholar
[10]Lion, G. and Vergne, M., ‘The Shale–Weil representations and the Maslov Index’, in: The Weil Representation, Maslov Index and Theta Series, Progress in Mathematics, 6 (Birkhäuser, Boston, MA, 1980), Part I.CrossRefGoogle Scholar
[11]Magneron, B., ‘Spineurs symplectiques purs et indice de Maslov de plan Lagrangiens positifs’, J. Funct. Anal. 59 (1984), 90122.CrossRefGoogle Scholar
[12]Magneron, B., ‘Spineurs purs et description cohomologique des groupes spinoriels’, J. Algebra 112 (1988), 349369.CrossRefGoogle Scholar
[13]Narasimhan, M. S. and Ramanan, S., ‘Existence of universal connections’, Amer. J. Math. 83 (1961), 563572.CrossRefGoogle Scholar
[14]Satake, I., ‘Fock representations and theta-functions’, in: Advances in the Theory of Riemann Surfaces (Princeton University Press, Princeton, NJ, 1971), pp. 393405.CrossRefGoogle Scholar
[15]Siegel, C. L., ‘Symplectic geometry’, Amer. J. Math. 65 (1943), 186.CrossRefGoogle Scholar
[16]Simon, B., ‘Holonomy, the quantum adiabatic theorem, and Berry’s phase’, Phys. Rev. Lett. 51 (1983), 21672170.CrossRefGoogle Scholar
[17]Wilczek, F. and Zee, A., ‘Appearance of gauge structure in simple dynamical systems’, Phys. Rev. Lett. 52 (1984), 21112114.CrossRefGoogle Scholar
[18]Woodhouse, N. M. J., ‘Geometric quantization and the Bogoliubov transformation’, Proc. R. Soc. Lond. Ser. A 378 (1981), 119139.Google Scholar
[19]Woodhouse, N. M. J., Geometric Quantization, 2nd edn (Oxford University Press, Oxford and New York, 1992).CrossRefGoogle Scholar
[20]Wu, S., ‘Quantum adiabatic theorem and universal holonomy’, Lett. Math. Phys. 16 (1988), 339345.CrossRefGoogle Scholar
[21]Wu, S., ‘Projective flatness in geometric quantization and the Maslov index’, Talks Confs. Fields Institute (Toronto, 2001), Univ. Colorado (Boulder, 2001) and AMS Meet. (Irvine, 2001).Google Scholar
[22]Wu, S., ‘Hermitian symmetric spaces, Shilov boundary, and Maslov index’, Talks Conf. Representation Theory (Sydney, 2002) and ICM (Beijing, 2002).Google Scholar
[23]Wu, S., ‘Projective flatness in the quantization of bosons and fermions’, Preprint HKU-IMR2010:#11, 2010, arXiv:1008.5333[math.SG].Google Scholar