No CrossRef data available.
Article contents
Holonomy and basic cohomology of foliations
Part of:
Differential topology
Published online by Cambridge University Press: 09 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper, we consider the relationship between the cohomologies of the basic differential forms and the transverse holonomy groupoid of a foliation. Applications to minimal models are given.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1996
References
[1]Benson, C. and Ellis, D. B., ‘Characteristic classes of transversely homogeneous foliations’, Trans. Amer. Math. Soc. 289 (1985), 849–859.CrossRefGoogle Scholar
[2]Buffet, J.-P. and Lor, J.-C., ‘Une construction d'un universel pour une classe assez large de Γ-structures’, C. R. Acad. Sci. Paris Sér. 1 Math. A 270 (1970), 640–642.Google Scholar
[3]da Silveira, F. E. A., ‘Rational homotopy theory of fibrations’, Pacific J. Math. 113 (1984), 1–34.CrossRefGoogle Scholar
[4]Dupont, J., Curvature and characteristic classes, Lecture Notes in Math. 640 (Springer, Berlin, 1978).CrossRefGoogle Scholar
[5]Kacimi-Alaoui, A. El, Sergiescu, V. and Hector, G., ‘La cohomologie basique d'un feuilletage riemannien est de dimension finie’, Math. Z. 188 (1985), 593–599.CrossRefGoogle Scholar
[6]Greub, W., Halperin, S. and Vanstone, R., Connections, curvature and cohomology, II (Academic Press, New York, 1973).Google Scholar
[7]Griffiths, P. and Morgan, J., Rational homotopy theory and differential forms, Progr. in Math. 16 (Birkhäuser, Boston, 1981).Google Scholar
[8]Grivel, P., ‘Formes différentielles et suites spectrales’, Ann. Inst. Fourier (Grenoble) 29 (1979), 17–37.CrossRefGoogle Scholar
[9]Haefliger, A., ‘Differential cohomology’, in: Differential topology (Liguori Editore, Napoli, 1979) pp. 19–70.Google Scholar
[10]Haefliger, A., ‘Groupoïdes d'holonomie et classifiants’, Astérisque 116 (1984), 70–79.Google Scholar
[11]Halperin, S., Lectures on minimal models, Publ. Internes de l' U.E.R. de Math. Pures et Appl. 111 (Université de Lille I, 1977).Google Scholar
[12]Kamber, F. and Ph., Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Math. 493 (Springer, Berlin, 1975).CrossRefGoogle Scholar
[13]Kamber, F. and ‘Foliations and metrics’, in: Proc. Special Year in Geometry, Maryland (1981–82), Progr. in Math. 32 (Birkhäuser, Boston, 1983) pp. 103–152.Google Scholar
[14]Kamber, F., Hodge-de Rham theory for Riemannian foliations’, Math. Ann. 227 (1987), 415–431.CrossRefGoogle Scholar
[15]Lehmann, D., Modèle minimal relatif des feuilletages, Lecture Notes in Math. 1183 (Springer, Berlin, 1986) pp. 250–258.Google Scholar
[16]Pang, P., ‘Basic dual homotopy invariants of Riemannian foliations’, Trans. Amer. Math. Soc. 322 (1990), 189–199.CrossRefGoogle Scholar
[17]Winkelnkemper, H., ‘The graph of a foliation’, Ann. Global Anal. Geom. 1 (1983), 51–75.CrossRefGoogle Scholar
You have
Access