Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T06:36:49.373Z Has data issue: false hasContentIssue false

Invex functions and duality

Published online by Cambridge University Press:  09 April 2009

B. D. Craven
Affiliation:
Department of MathematicsUniversity of MelbourneParkville, Victoria 3052, Australia
B. M. Glover
Affiliation:
Department of MathematicsUniversity of MelbourneParkville, Victoria 3052, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For both differentiable and nondifferentiable functions defined in abstract spaces we characterize the generalized convex property, here called cone-invexity, in terms of Lagrange multipliers. Several classes of such functions are given. In addition an extended Kuhn-Tucker type optimality condition and a duality result are obtained for quasidifferentiable programming problems.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1985

References

[1]Borwein, J. M., ‘Fractional programming without differentiability’, Math. Programming 11 (1976), 283290.CrossRefGoogle Scholar
[2]Clarke, F. H., ‘Generalized gradients of Lipschitz functionals’, Adv. in Math. 40 (1981), 5267.CrossRefGoogle Scholar
[3]Craven, B. D., Mathematical programming and control theory (Chapman and Hall, London, 1978).CrossRefGoogle Scholar
[4]Craven, B. D., ‘Duality for generalized convex fractional programs’, Generalized concavity in optimization and economics, edited by Schaible, S. and Ziemba, W. T., pp. 473490 (Academic Press, New York), 1981.Google Scholar
[5]Craven, B. D., ‘Invex functions and constrained local minima’, Bull. Austral. Math. Soc. 24 (1981), 357366.CrossRefGoogle Scholar
[6]Craven, B. D. and Mond, B., ‘Lagrangean conditions for quasidifferentiable optimization’, Survey of mathematical programming, Volume 1, Akadémiai Kiadó, Budapest, 1979, edited by Prékopa, A., pp. 177192, (proceedings of the 9th International Programming Symposium, Budapest, 1976).Google Scholar
[7]Glover, B. M., ‘A generalized Farkas lemma with applications to quasidifferentiable programming’, Z. Oper. Res. 26 (1982), 125141.Google Scholar
[8]Glover, B. M., ‘Differentiable programming in Banach spaces’, Math. Operationsforsch. Statist. Ser. Optimization 14 (1983), 499508.CrossRefGoogle Scholar
[9]Goberna, M. A., Lopez, M. A., Pastor, J. and Vercher, E., ‘An approach to semi-infinite programming via consequence relations’, Conference paper, Intern. Symposium Semi-infinite Programming and Applications, University of Texas, Austin, 09, 1981.Google Scholar
[10]Hanson, M. A., ‘On sufficiency of the Kuhn-Tucker conditions’, J. Math. Anal. Appl. 80 (1981), 545550.CrossRefGoogle Scholar
[11]Hanson, M. A. and Mond, B., ‘Further generalizations of convexity in mathematical programming’, J. Inform. Optim. Sci. 3 (1982), 2532.Google Scholar
[12]Hanson, M. A. and Mond, B., Necessary and sufficient conditions for global optimality in constrained optimization, FSU Statistics Report M-600, Florida State University, Tallahassee, 11, 1981.Google Scholar
[13]Holmes, R. B., Geometric functional analysis and its applications (Springer-Verlag, New York, 1975).CrossRefGoogle Scholar
[14]Mangasarian, O. L., Nonlinear programming (McGraw-Hill, New York, 1969).Google Scholar
[15]Nieuwenhus, J. W., ‘Another application of Guignard's generalized Kuhn-Tucker conditions’, J. Optim. Theory Appl. 30 (1980), 117125.CrossRefGoogle Scholar
[16]Pshenichnyi, B. N., Necessary conditions for an extremum (Marcel Dekker, New York, 1971).Google Scholar
[17]Rockafellar, R. T., Conjugate duality and optimization (SIAM Regional Conference Series in Applied Mathematics 16, Philadelphia, 1974).CrossRefGoogle Scholar
[18]Trudzik, L. I., ‘Asymptotic Kuhn-Tucker conditions in abstract spaces’, Numer. Funct. Anal. Optim. 4 (1982), 355369.CrossRefGoogle Scholar
[19]Vercher, E., Teoremos de alternativa para sistemas infinitos aplicación a la programación y juegos semi-infinitos (Tesis Doctoral, Universidad de Valencia, Spain, 1981).Google Scholar
[20]Zalinescu, C., ‘A generalization of the Farkas lemma and applications to convex programming’, J. Math. Analy. Appl. 66 (1978), 651678.CrossRefGoogle Scholar
[21]Zalinescu, C., ‘On an abstract control problem’, Numer. Funct. Anal. Appl. 2 (1980), 531542.CrossRefGoogle Scholar
[22]Zang, I. and Avriel, M., ‘On functions whose local minima are global’, J. Optim. Theory Appl. 16 (1975), 183190.CrossRefGoogle Scholar
[23]Zang, I., Choo, E. U. and Avriel, M., A note on functions whose local minima are global, J. Optim. Theory Appl. 18 (1976), 555559.CrossRefGoogle Scholar
[24]Zang, I., Choo, E. U. and Avriel, M., ‘On functions whose stationary points are global minima’, J. Optim. Theory Appl. 22 (1977), 195207.CrossRefGoogle Scholar
[25]Zlobec, S., ‘Extensions of asymptotic Kuhn-Tucker conditions in mathematical programming’, SIAM J. Appl. Math. 21 (1971), 448460.CrossRefGoogle Scholar