Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T07:16:50.347Z Has data issue: false hasContentIssue false

The iteration of polynomials and transcendental entire functions

Published online by Cambridge University Press:  09 April 2009

I. N. Baker
Affiliation:
Department of Mathematics, Imperial College, London SW 7 2AZ.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The iterative behaviour of polynomials is contrasted with that of small transcendental functions as regards the existence of unbounded domains of normality for the sequence of iterates.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1981

References

[1]Baker, I. N., ‘Repulsive fixpoints of entire functions’, Math. Z. 104 (1968) 252256.CrossRefGoogle Scholar
[2]Baker, I. N., ‘Completely invariant domains of entire functions’, Math, essays dedicated to A. J. Maclntyre (Ohio University Press, Athens, Ohio, 1970).Google Scholar
[3]Baker, I. N., ‘Limit functions and sets of non-normality in iteration theory’, Ann. Acad. Sci. Fenn. Ser. A I, 467, 111 (1970).Google Scholar
[4]Baker, I. N., ‘The domains of normality of an entire function’, Ann. Acad. Sci. Fenn. Ser A I, 1, (1975) 277283.Google Scholar
[5]Barry, P. D., ‘The minimum modulus of small integral and subharmonic functions’, Proc. London Math. Soc. (3) 12, (1962) 445495.CrossRefGoogle Scholar
[6]Bhattacharyya, P., ‘On the domain of normality of an attractive fixpoint’, Trans. Amer. Math. Soc. 153, (1971) 8998.CrossRefGoogle Scholar
[7]Bhattacharyya, P., Iteration of analytic functions (Ph.D. thesis, University of London, 1969).Google Scholar
[8]Cremer, H., ‘Über die Schröersche Funktionalgleichung u.s.w.’, Ber. Verh. Sächasische Akad. Leipzig 84, (1932) 291324.Google Scholar
[9]Denjoy, A., ‘Sur 1'itération des fonctions analytiques’, C. R. Acad. Sci. Paris Sér A-B 182, (1926) 275–257.Google Scholar
[10]Fatou, P., ‘Sur les équations fonctionelles’, Bull. Soc. Math. France 47, (1919) 161271; 48, (1920) 33–94 and 208–314.CrossRefGoogle Scholar
[11]Fatou, P., ‘Sur 1'itération des fonctions transcendantes entieres’, Acta Math. 47, (1926) 337370.CrossRefGoogle Scholar
[12]Julia, G., ‘Mémoire sur l'itération des fonctions rationelles’, J. Math. Pures Appl. (8) 1, (1918) 47245.Google Scholar
[13]Hayman, W. K., Meromorphic functions (The Clarendon Press. Oxford, 1964).Google Scholar
[14]Hems, M., ‘Entire functions with bounded minimum modulus; subharmonic function analogues’, Ann. of Math. (2) 49, (1948) 200213.Google Scholar
[15]Rüssman, H., ‘Über die Iteration analytischer Funktionen’, J. Math. Mech. 17, (1967) 523532.Google Scholar
[16]Whyburn, G. T., Analytic Topology’ (Am. Math. Soc. Colloquium Pub. Providence, U.S.A. (1942)).CrossRefGoogle Scholar
[17]Wolff, J., ‘Sur l'itération des fonctions bornées’, C. R. Acad. Sci. Paris Sér A-B 182, (1926) 200201.Google Scholar