No CrossRef data available.
Article contents
L. G. KOVÁCS AND LINEAR GROUPS
Published online by Cambridge University Press: 12 May 2016
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We survey the legacy of L. G. Kovács in linear group theory, with a particular focus on classification questions.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2016 Australian Mathematical Publishing Association Inc.
References
Bácskai, Z., ‘Finite irreducible monomial groups of small prime degree’, PhD Thesis, Australian National University, 1999.Google Scholar
Blichfeldt, H. F., Finite Collineation Groups (University of Chicago Press, Chicago, 1917).Google Scholar
Bryant, R. M., Kovács, L. G. and Robinson, G. R., ‘Transitive permutation groups and irreducible linear groups’, Q. J. Math. Oxford Ser. (2)
46(184) (1995), 385–407.CrossRefGoogle Scholar
Conlon, S. B., ‘
p-groups with an abelian maximal subgroup and cyclic center’, J. Aust. Math. Soc. Ser. A
22(2) (1976), 221–233.Google Scholar
Coutts, H. J., Quick, M. and Roney-Dougal, C., ‘The primitive permutation groups of degree less than 4096’, Comm. Algebra
39(10) (2011), 3526–3546.Google Scholar
Detinko, A. S., ‘A new GAP group library for irreducible maximal solvable subgroups of prime degree classical groups’, J. Math. Sci. (N.Y.)
108(6) (2002), 942–950.Google Scholar
Detinko, A. S., Eick, B. and Flannery, D. L., Nilmat—Computing with nilpotent matrix groups. http://www.gap-system.org/Packages/nilmat.html.Google Scholar
Detinko, A. S. and Flannery, D. L., ‘Classification of nilpotent primitive linear groups over finite fields’, Glasg. Math. J.
46(3) (2004), 585–594.Google Scholar
Dixon, J. D. and Kovács, L. G., ‘Generating finite nilpotent irreducible linear groups’, Q. J. Math. Oxford Ser. (2)
44(173) (1993), 1–15.CrossRefGoogle Scholar
Dixon, J. D. and Mortimer, B., ‘The primitive permutation groups of degree less than 1000’, Math. Proc. Cambridge Philos. Soc.
103(2) (1988), 213–238.Google Scholar
Dixon, J. D. and Zalesskii, A. E., ‘Finite primitive linear groups of prime degree’, J. Lond. Math. Soc. (2)
57(1) (1998), 126–134.Google Scholar
Dixon, J. D. and Zalesskii, A. E., ‘Finite imprimitive linear groups of prime degree’, J. Algebra
276(1) (2004), 340–370.Google Scholar
Dixon, J. D. and Zalesskii, A. E., ‘Corrigendum: “Finite primitive linear groups of prime degree” [J. Lond. Math. Soc. (2) 57 (1998), no. 1, 126–134]’, J. Lond. Math. Soc. (2)
77(3) (2008), 808–812.Google Scholar
Eick, B. and Höfling, B., ‘The solvable primitive permutation groups of degree at most 6560’, LMS J. Comput. Math.
6 (2003), 29–39; (electronic).CrossRefGoogle Scholar
Feit, W., ‘The current situation in the theory of finite simple groups’, in: Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1 (Gauthier-Villars, Paris, 1971), 55–93.Google Scholar
Feit, W., ‘On finite linear groups in dimension at most 10’, in: Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975) (Academic Press, New York, 1976), 397–407.Google Scholar
Flannery, D. L., The Finite Irreducible Linear 2-groups of Degree 4, Memoirs of the American Mathematical Society (American Mathematical Society, Providence, RI, 1997).Google Scholar
Flannery, D. L., ‘The finite irreducible monomial linear groups of degree 4’, J. Algebra
218(2) (1999), 436–469.Google Scholar
Flannery, D. L. and O’Brien, E. A., ‘Linear groups of small degree over finite fields’, Internat. J. Algebra Comput.
15(3) (2005), 467–502.Google Scholar
Höfling, B., ‘Finite irreducible imprimitive nonmonomial complex linear groups of degree 4’, J. Algebra
236(2) (2001), 419–470.Google Scholar
Kovács, L. G., ‘Some representations of special linear groups’, in: The Arcata Conference on Representations of Finite Groups (Arcata, CA, 1986), Proceedings of Symposia in Pure Mathematics, 47, Part 2 (American Mathematical Society, Providence, RI, 1987), 207–218.Google Scholar
Kovács, L. G., ‘On tensor induction of group representations’, J. Aust. Math. Soc. Ser. A
49(3) (1990), 486–501.Google Scholar
Kovács, L. G., ‘Semigroup algebras of the full matrix semigroup over a finite field’, Proc. Amer. Math. Soc.
116(4) (1992), 911–919.Google Scholar
Kovács, L. G. and Robinson, G. R., ‘Generating finite completely reducible linear groups’, Proc. Amer. Math. Soc.
112(2) (1991), 357–364.CrossRefGoogle Scholar
Kovács, L. G. and Sim, H.-S., ‘Generating finite soluble groups’, Indag. Math. (N.S.)
2(2) (1991), 229–232.Google Scholar
Kovács, L. G. and Sim, H.-S., ‘Nilpotent metacyclic irreducible linear groups of odd order’, Arch. Math. (Basel)
65(4) (1995), 281–288.Google Scholar
Robinson, G. R., ‘The work of L.G. Kovács on representation theory’, J. Aus. Math. Soc., to appear. Published online (16 June 2015).Google Scholar
Short, M. W., The Primitive Soluble Permutation Groups of Degree Less than 256, Lecture Notes in Mathematics, 1519 (Springer, Berlin, 1992).Google Scholar
Sim, H.-S., ‘Metacyclic primitive linear groups’, Comm. Algebra
22(1) (1994), 269–278.Google Scholar
Suprunenko, D. A., Matrix Groups, Translations of Mathematical Monographs, Vol. 45 (American Mathematical Society, Providence, RI, 1976).CrossRefGoogle Scholar
Zalesskii, A. E., ‘Linear groups’, Itogi Nauki i Tekhniki, Seriya Algebra,Topologiya, Geometriya, vol. 21 (1983), 135–182; J. Soviet Math. 31(3) (1985), 2974–3004 (English transl.).Google Scholar
Zalesskii, A. E., ‘Linear groups’, in: Algebra IV, Encyclopaedia Math. Sci., Vol. 37 (Springer, Berlin, 1993), 97–196.Google Scholar
You have
Access