Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-11T00:48:35.815Z Has data issue: false hasContentIssue false

LIMITS OF HYPERCYCLIC AND SUPERCYCLIC OPERATOR MATRICES

Published online by Cambridge University Press:  01 December 2008

XIAOHONG CAO*
Affiliation:
College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, 710062, People’s Republic of China (email: xiaohongcao@snnu.edu.cn)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An operator A on a complex, separable, infinite-dimensional Hilbert space H is hypercyclic if there is a vector xH such that the orbit {x,Ax,A2x,…} is dense in H. Using the character of the analytic core and quasinilpotent part of an operator A, we explore the hypercyclicity for upper triangular operator matrix

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

References

[1]Aiena, P., Fredholm and Local Spectral Theory, with Applications to Multipliers (Kluwer Academic, Dordrecht, 2004).Google Scholar
[2]Cao, X., ‘Weyl type theorem and hypercyclicity II’, Proc. Amer. Math. Soc. 135 (2007), 17011708.Google Scholar
[3]Cao, X., ‘Weyl type theorem and hypercyclic operarors’, J. Math. Anal. Appl. 323 (2006), 267274.CrossRefGoogle Scholar
[4]Cao, X. and Meng, B., ‘Essential approximate point spectrum and Weyl’s theorem for operator matrices’, J. Math. Anal. Appl. 304 (2005), 759771.CrossRefGoogle Scholar
[5]Cao, X., ‘Browder essential approximate point spectrum and hypercyclicity for operator matrices’, Linear Algebra Appl. 426 (2007), 317324.Google Scholar
[6]Colojoară, I. and Foiaş, C., Theory of Generalized Spectral Operators (Gordon and Breach, New York, 1968).Google Scholar
[7]Duggal, D. P. and Djordjević, S. V., ‘Dunford’s property and Weyl’s theorem’, Integral Equations Operator Theory 43 (2002), 290297.Google Scholar
[8]Duggal, D. P., ‘Polaroid operators satisfying Weyl’s theorem’, Linear Algebra Appl. 414 (2006), 271277.Google Scholar
[9]Finch, J. K., ‘The single valued extension property on a Banach space’, Pacific J. Math. 58 (1975), 6169.Google Scholar
[10]Grabiner, S., ‘Uniform ascent and descent of bounded operators’, J. Math. Soc. Japan 34(2) (1982), 317337.CrossRefGoogle Scholar
[11]Han, Y. M. and Kim, A. H., ‘A note on *-paranormal operators’, Integral Equations Operator Theory 49 (2004), 435444.Google Scholar
[12]Herrero, D. A., ‘Limits of hypercyclic and supercyclic operators’, J. Funct. Anal. 99 (1991), 179190.Google Scholar
[13]Hilden, H. M. and Wallen, L. J., ‘Some cyclic and non-cyclic vectors for certain operators’, Indiana Univ. Math. J. 23 (1974), 557565.Google Scholar
[14]Kitai, C., ‘Invariant closed sets for linear operators’, Dissertation, University of Toronto, 1982.Google Scholar
[15]Mbekhta, M., ‘Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux’, Glasgow Math. J. 29 (1987), 159175.Google Scholar
[16]Mbekhta, M. and Ouahab, A., ‘Opérateurs s-regulier dans un espace de Banach et théorie spectrale’, Acta Sci. Math. (Szeged) 59 (1994), 525543.Google Scholar
[17]Schmoeger, C., ‘On isolated point of the spectrum of a bounded linear operator’, Proc. Amer. Math. Soc. 117 (1993), 715719.CrossRefGoogle Scholar
[18]Schmoeger, C., ‘Ascent, descent and the Atkinson region in Banach algebras II’, Ricerche Mat. XLII (1993), 249264.Google Scholar