Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T17:37:11.371Z Has data issue: false hasContentIssue false

Loomis-sikorski theorem for σ-complete MV-algebras and ℓ-groups

Published online by Cambridge University Press:  09 April 2009

Anatolij Dvurečenskij
Affiliation:
Mathematical Institute Slovak Academy of Sciences Štefánikova 49 SK-814 73 Bratislava Slovakia e-mail: dvurecen@mat.savba.sk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that every σ-complete MV-algebra is an MV-σ-homomorphic image of some σ-complete MV- algebra of fuzzy sets, called a tribe, which is a system of fuzzy sets of a crisp set Ω containing 1Ω and closed under fuzzy complementation and formation of min {∑nfn, 1}. Since a tribe is a direct generalization of a σ-algebra of crisp subsets, the representation theorem is an analogue of the Loomis-Sikorski theorem for MV-algebras. In addition, this result will be extended also for Dedekind σ-complete ℓ-groups with strong unit.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[Bel]Belluce, L. P., ‘Semisimple algebras of infinite valued logic’, Canad. J. Math. 38 (1986), 13561379.CrossRefGoogle Scholar
[Bir]Birkhoff, G., Lattice theory, Coll. Publ. 25 (Amer. Math. Soc., Providence, 1997).Google Scholar
[Cha]Chang, C. C., ‘Algebraic analysis of many-valued logics’, Trans. Amer. Math. Soc. 88 (1958), 467490.CrossRefGoogle Scholar
[Cig]Cignoli, R., ‘Complete and atomic algebras of the infinite valued Łukasiewicz logic’, Studia Logica 50 (1991), 375384.CrossRefGoogle Scholar
[CDM]Cignoli, R., D'Ottaviano, I. M. L. and Mundici, D., Algebraic foundations of many-valued reasoning, (Kluwer Acad. Publ., Dordrecht, to appear).CrossRefGoogle Scholar
[DCR]Dvurečenskij, A., Chovanec, F. and Rybáriková, E., ‘D-homomorphisms and atomic σ-complete Boolean D-posets’, Soft Comput., to appear.Google Scholar
[DvGr]Gvurečenskij, A. and Graziano, M. G., ‘Commutative BCK-algebras and lattice ordered groups with universal property’, Math. Japonica 49 (1999), 159174.Google Scholar
[Goo]Goodearl, K. R., Partially ordered Abelian groups with interpolation, Math. Surveys Monographs 20 (Amer. Math. Soc., Providence, 1986).Google Scholar
[Jak]Jakubík, J., ‘On complete MV-algebras’, Czechoslovak Math. J. 45 (120) (1995), 473480.CrossRefGoogle Scholar
[Kur]Kuratowski, K., Topology I (Mir, Moskva, 1966).Google Scholar
[Mun]Mundici, D., ‘Interpretation of AF C*-algebras in Łukasiewicz sentential calculus’, J. Funct. Anal. 65 (1986), 1563.CrossRefGoogle Scholar
[Mun1]Mundici, D., ‘Averaging the truth-value in Łukasiewicz logic’, Studia Logica 55 (1995), 113127.CrossRefGoogle Scholar
[RiNe]Riečan, B. and Neubrunn, T., Integral, measures, and ordering (Kluwer Acad. Publ., Dordrecht, 1997).CrossRefGoogle Scholar
[Sik]Sikorski, R., Boolean algebras (Springer, Berlin, 1964).Google Scholar