Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T06:50:26.639Z Has data issue: false hasContentIssue false

LOOP GROUPS, STRING CLASSES AND EQUIVARIANT COHOMOLOGY

Published online by Cambridge University Press:  22 March 2011

RAYMOND F. VOZZO*
Affiliation:
School of Mathematical Sciences, University of Adelaide, Adelaide SA 5005, Australia (email: raymond.vozzo@adelaide.edu.au)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a classifying theory for LG-bundles, where LG is the loop group of a compact Lie group G, and present a calculation for the string class of the universal LG-bundle. We show that this class is in fact an equivariant cohomology class and give an equivariant differential form representing it. We then use the caloron correspondence to define (higher) characteristic classes for LG-bundles and to prove a result for characteristic classes for based loop groups for the free loop group. These classes have a natural interpretation in equivariant cohomology and we give equivariant differential form representatives for the universal case in all odd dimensions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Alekseev, A. and Meinrenken, E., ‘The Atiyah algebroid of the path fibration over a Lie group’, Lett. Math. Phys. 90 (2009), 2358.Google Scholar
[2]Atiyah, M. F. and Bott, R., ‘The moment map and equivariant cohomology’, Topology 23(1) (1984), 128.CrossRefGoogle Scholar
[3]Carey, A. L. and Mickelsson, J., ‘The universal gerbe, Dixmier–Douady class, and gauge theory’, Lett. Math. Phys. 59(1) (2002), 4760.CrossRefGoogle Scholar
[4]Cartan, H., ‘Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie’, in: Colloque de topologie (espaces fibrés), Bruxelles, 1950 (Georges Thone, Liège, 1951), pp. 1527.Google Scholar
[5]Dupont, J. L., Curvature and Characteristic Classes, Lecture Notes in Mathematics, 640 (Springer, Berlin, 1978).Google Scholar
[6]Garland, H. and Murray, M. K., ‘Kac–Moody monopoles and periodic instantons’, Comm. Math. Phys. 120(2) (1988), 335351.CrossRefGoogle Scholar
[7]Guillemin, V. W. and Sternberg, S., Supersymmetry and Equivariant de Rham Theory, Mathematics Past and Present (Springer, Berlin, 1999), With an appendix containing two reprints by Henri Cartan.CrossRefGoogle Scholar
[8]Jeffrey, L. C., ‘Group cohomology construction of the cohomology of moduli spaces of flat connections on 2-manifolds’, Duke Math. J. 77(2) (1995), 407429.CrossRefGoogle Scholar
[9]Kalkman, J., ‘A BRST model applied to symplectic geometry’, PhD Thesis, Universiteit Utrecht, 1993.Google Scholar
[10]Killingback, T. P., ‘World-sheet anomalies and loop geometry’, Nuclear Phys. B 288(3–4) (1987), 578588.CrossRefGoogle Scholar
[11]Mathai, V. and Quillen, D., ‘Superconnections, Thom classes, and equivariant differential forms’, Topology 25(1) (1986), 85110.CrossRefGoogle Scholar
[12]Murray, M. K. and Stevenson, D., ‘Higgs fields, bundle gerbes and string structures’, Comm. Math. Phys. 243(3) (2003), 541555.Google Scholar
[13]Murray, M. K. and Vozzo, R. F., ‘The caloron correspondence and higher string classes for loop groups’, J. Geom. Phys. 60(9) (2010), 12351250.CrossRefGoogle Scholar
[14]Murray, M. K. and Vozzo, R. F., ‘Circle actions, central extensions and string structures’, Int. J. Geom. Methods Mod. Phys. 7(6) (2010), 10651092.CrossRefGoogle Scholar
[15]Narasimhan, M. S. and Ramanan, S., ‘Existence of universal connections’, Amer. J. Math. 83 (1961), 563572.Google Scholar
[16]Narasimhan, M. S. and Ramanan, S., ‘Existence of universal connections. II’, Amer. J. Math. 85 (1963), 223231.Google Scholar
[17]Pressley, A. and Segal, G., Loop Groups, Oxford Mathematical Monographs (Oxford University Press, New York, 1986).Google Scholar
[18]Schlafly, R., ‘Universal connections’, Invent. Math. 59(1) (1980), 5965.CrossRefGoogle Scholar
[19]Vozzo, R. F., ‘Loop groups, Higgs fields and generalised string classes’, PhD Thesis, School of Mathematical Sciences, University of Adelaide, 2009.Google Scholar