Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T19:27:56.902Z Has data issue: false hasContentIssue false

MIXED NORM ESTIMATES FOR POTENTIAL OPERATORS RELATED TO THE RADON TRANSFORM

Published online by Cambridge University Press:  01 April 2008

JAVIER DUOANDIKOETXEA*
Affiliation:
Departamento de Matemáticas, Universidad del País Vasco-Euskal, Herriko Unibertsitatea, Apartado 644, 48080 Bilbao, Spain (email: javier.duoandikoetxea@ehu.es)
OSANE ORUETXEBARRIA
Affiliation:
Departamento de Matemáticas, Universidad del País Vasco-Euskal, Herriko Unibertsitatea, Apartado 644, 48080 Bilbao, Spain (email: osane.oruetxebarria@ehu.es)
*
For correspondence; e-mail: javier.duoandikoetxea@ehu.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We define potential operators on hyperplanes and give sharp mixed norm inequalities for them. One of the operators coincides with the Radon transform for which mixed norm estimates are known but in reverse order. Those inequalities will be crucial in our proofs.

Type
Research Article
Copyright
Copyright © 2008 Australian Mathematical Society

Footnotes

Both authors supported in part by grant BFM2002-01550 of MCYT (Spain) and FEDER, and by European Project HPRN-CT-2001-00273-HARP.

References

[1]Bergh, J. and Löfström, J., Interpolation Spaces. An Introduction (Springer, Berlin, 1976).CrossRefGoogle Scholar
[2]Christ, F. M., ‘Estimates for the k-plane transform’, Indiana Univ. Math. J. 33 (1984), 891910.CrossRefGoogle Scholar
[3]Christ, M., Duoandikoetxea, J. and Rubio de Francia, J. L., ‘Maximal operators related to the Radon transform and the Calderón–Zygmund method of rotations’, Duke Math. J. 53 (1986), 189209.CrossRefGoogle Scholar
[4]Deans, S. R., The Radon Transform and Some of its Applications (John Wiley & Sons, New York, 1983).Google Scholar
[5]Drury, S., ‘A survey of k-plane estimates’, Contemp. Math. 91 (1989), 4355.CrossRefGoogle Scholar
[6]Duoandikoetxea, J., Naibo, V. and Oruetxebarria, O., ‘k-plane transforms and related operators on radial functions’, Michigan Math. J. 49 (2001), 265276.CrossRefGoogle Scholar
[7]Duoandikoetxea, J. and Oruetxebarria, O., ‘Mixed norm inequalities for directional operators associated to potentials’, Potential Anal. 15 (2001), 273283.CrossRefGoogle Scholar
[8]Natterer, F., The Mathematics of Computerized Tomography (B. G. Teubner, Stuttgart/John Wiley & Sons, Chichester, 1986).Google Scholar
[9]Oberlin, D. M. and Stein, E. M., ‘Mapping properties of the Radon transform’, Indiana Univ. Math. J. 31 (1982), 641650.CrossRefGoogle Scholar
[10]Stein, E. M. and Weiss, G., Introduction to Fourier Analysis in Euclidean spaces (Princeton University Press, Princeton, NJ, 1971).Google Scholar