No CrossRef data available.
Article contents
Monodromy in local groups
Published online by Cambridge University Press: 09 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
A monodromy theorem for homomorphisms of local groups into groups is proved. It follows that under suitable conditions the universal group of the local group depends only on the germ of the local group (up to natural isomorphism).
1980 Mathematics subject classification (Amer. Math. Soc.): 22 E 05.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1980
References
Chevalley, C., (1946). Theory of Lie groups, I (Princeton University Press, Princeton, N.J.).Google Scholar
Ganea, T. (1951), ‘Du prolongement des représentations locales des groupes topologiques’, Acta Sci. Math. (Szeged) 14, 115–124.Google Scholar
Ganea, T. (1953), ‘Groupes topologiques sans centre’, Rev. Univ. ‘C.I.Parhon’ Politehn. Bucureşti, Ser. Şti. Nat., no. 3, 37–38.Google Scholar
Lazard, M. and Tits, J. (1966), ‘Domaines d'injectivité de l'application exponentielle’, Topology 4, 315–322.Google Scholar
Pontrjagin, L. S. (1939), Topological groups (Princeton University Press, Princeton, N.J.).Google Scholar
Świerczkowski, S. (1965), ‘Embedding theorems for local analytic groups’, Acta Math. 114, 207–235.CrossRefGoogle Scholar
Świerczkowski, S. (1971), ‘The path functor on Banach Lie algebras’, Indagationes Math. 33, 235–239.CrossRefGoogle Scholar
You have
Access