Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T17:02:14.746Z Has data issue: false hasContentIssue false

Negative definite and Schoenberg functions on commutative hypergroups

Published online by Cambridge University Press:  09 April 2009

Walter R. Bloom
Affiliation:
Division of Science and EngineeringMurdoch University Perth, WA 6150Australia e-mail: w.bloom@murdoch.edu.au
Paul Ressel
Affiliation:
Mathematisch-Geographische FakultätKatholische Universität Eichstätt85072 EichstättGermany e-mail: paul.ressel@ku-eichstaett.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we investigate when negative definite functions on commutative hypergroups satisfy the Schoenberg criterion.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Berg, C., Christensen, J. P. R. and Ressel, P., Harmonic analysis on semigroups. Theory of positive definite and related functions (Springer, New York, 1984).CrossRefGoogle Scholar
[2]Bloom, W. R. and Heyer, H., Harmonic analysis of probability measures on hypergroups (Walter de Gruyter, Berlin, 1995).CrossRefGoogle Scholar
[3]Lasser, R., ‘Orthogonal polynomials and hypergroups’, Rend. Mat. 3 (1983), 185209.Google Scholar
[4]Voit, M., ‘Negative definite functions on commutative hypergroups’, in: Probability measures on groups, IX (Oberwolfach 1988), Lecture Notes in Math. 1379 (Springer, Berlin, 1989) pp. 376388.CrossRefGoogle Scholar