Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T10:06:37.906Z Has data issue: false hasContentIssue false

A new bitopological paracompactness

Published online by Cambridge University Press:  09 April 2009

T. G. Raghavan
Affiliation:
Department of Mathematics, University of Auckland, Auckland, New Zealand
I. L. Reilly
Affiliation:
Department of Mathematics, University of Auckland, Auckland, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we define generalization of paracompactness for bitopological spaces. (X, τ1, τ2) is Δ-pairwise paracompact if and only if every τi open cover admits a τ1 ∨ τ2 open refinement which is τ1 ∨ τ2 locally finite. Every quasimetric space (X, τp, τq) is Δ-pairwise paracompact. An analogue of Michael's characterization of regular paracompact spaces is proved for Δ-pairwise paracompact spaces.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1986

References

[1]Cooke, I. E. and Reilly, I. L., ‘On bitopological compactness’, J. London Math. Soc. (2) 13 (1975), 518522.Google Scholar
[2]Dugundji, J., Topology (Allyn and Bacon, Boston, Mass., 1966).Google Scholar
[3]Fletcher, P., Hoyle, H. B. III and Patty, C. W., ‘The comparison of topologies’, Duke Math. J. 36 (1969), 325332.Google Scholar
[4]Kelley, J. L., General topology (Van Nostrand, New Jersey, 1955).Google Scholar
[5]Kelly, J. C., ‘Bitopological spaces’, Proc. London Math. Soc. 13 (1963), 7189.Google Scholar
[6]Raghavan, T. G. and Reilly, I. L., ‘Metrizability of quasimetric spaces’, J. London Math. Soc. (2) 15 (1977), 169172.CrossRefGoogle Scholar
[7]Raghavan, T. G. and Reilly, I. L., ‘On nonsymmetric topological structres’ (Topology (Proc. Fourth Colloq., Budapest, 1978) Vol. II, Colloq. Math. Soc. Janos Bolyai, Vol. 23, North-Holland, Amsterdam, 1980, pp. 10051014).Google Scholar
[8]Sion, M. and Zelmer, G., ‘On quasimetrizability’, Canad. J. Math. 19 (1967), 12431249.Google Scholar
[9]Stoltenberg, R. A., ‘On quasimetric spaces’, Duke Math. J. 36 (1969), 6571.Google Scholar
[10]Wilson, W. A., ‘On quasimetric spaces’, Amer. J. Math. 53 (1931), 675684.Google Scholar