No CrossRef data available.
Article contents
A NILPOTENCY-LIKE CONDITION FOR INFINITE GROUPS
Published online by Cambridge University Press: 28 March 2018
Abstract
If $k$ is a positive integer, a group $G$ is said to have the $FE_{k}$-property if for each element $g$ of $G$ there exists a normal subgroup of finite index $X(g)$ such that the subgroup $\langle g,x\rangle$ is nilpotent of class at most $k$ for all $x\in X(g)$. Thus, $FE_{1}$-groups are precisely those groups with finite conjugacy classes ($FC$-groups) and the aim of this paper is to extend properties of $FC$-groups to the case of groups with the $FE_{k}$-property for $k>1$. The class of $FE_{k}$-groups contains the relevant subclass $FE_{k}^{\ast }$, consisting of all groups $G$ for which to every element $g$ there corresponds a normal subgroup of finite index $Y(g)$ such that $\langle g,U\rangle$ is nilpotent of class at most $k$, whenever $U$ is a nilpotent subgroup of class at most $k$ of $Y(g)$.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2018 Australian Mathematical Publishing Association Inc.