Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T16:15:51.760Z Has data issue: false hasContentIssue false

A NOTE ON MARCINKIEWICZ INTEGRALS ASSOCIATED TO SURFACES OF REVOLUTION

Published online by Cambridge University Press:  14 August 2017

FENG LIU*
Affiliation:
College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China email liufeng860314@163.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We establish the bounds of Marcinkiewicz integrals associated to surfaces of revolution generated by two polynomial mappings on Triebel–Lizorkin spaces and Besov spaces when their integral kernels are given by functions $\unicode[STIX]{x1D6FA}\in H^{1}(\text{S}^{n-1})\cup L(\log ^{+}L)^{1/2}(\text{S}^{n-1})$. Our main results represent improvements as well as natural extensions of many previously known results.

Type
Research Article
Copyright
© 2017 Australian Mathematical Publishing Association Inc. 

References

Al-Salman, A., Al-Qassem, H., Cheng, L. C. and Pan, Y., ‘ L p bounds for the function of Marcinkiewicz’, Math. Res. Lett. 9 (2002), 697700.Google Scholar
Al-Salman, A. and Pan, Y., ‘Singular integrals with rough kernels in Llog+ L (S n-1)’, J. Lond. Math. Soc. 66 (2002), 153174.CrossRefGoogle Scholar
Al-Qassem, H. M. and Al-Salman, A., ‘A note on Marcinkiewicz integral operators’, J. Math. Anal. Appl. 282 (2003), 698710.Google Scholar
Al-Qassem, H. M. and Pan, Y., ‘On certain estimates for Marcinkiewicz integrals and extrapolation’, Collect. Math. 60 (2009), 123145.CrossRefGoogle Scholar
Chen, J., Fan, D. and Pan, Y., ‘A note on a Marcinkiewicz integral operator’, Math. Nachr. 227 (2001), 3342.Google Scholar
Colzani, L., ‘Hardy spaces on spheres’, PhD Thesis, Washington University in St. Louis, 1982.Google Scholar
Colzani, L., Taibleson, M. and Weiss, G., ‘Maximal estimates for Cesàro and Riesz means on sphere’, Indiana Univ. Math. J. 33 (1984), 873889.CrossRefGoogle Scholar
Ding, Y., Fan, D. and Pan, Y., ‘ L p  -boundedness of Marcinkiewicz integrals with Hardy space function kernel’, Acta Math. Sin. (Engl. Ser.) 16 (2000), 593600.CrossRefGoogle Scholar
Ding, Y., Fan, D. and Pan, Y., ‘On the L p boundedness of Marcinkiewicz integrals’, Michigan Math. J. 50 (2002), 1726.CrossRefGoogle Scholar
Ding, Y., Lu, S. and Yabuta, K., ‘A problem on rough parametric Marcinkiewicz functions’, J. Aust. Math. Soc. 72 (2002), 1321.CrossRefGoogle Scholar
Ding, Y. and Pan, Y., ‘ L p bounds for Marcinkiewicz integrals’, Proc. Edinb. Math. Soc. 46 (2003), 669677.CrossRefGoogle Scholar
Fan, D. and Pan, Y., ‘Singular integral operators with rough kernels supported by subvarieties’, Amer. J. Math. 119 (1997), 799839.Google Scholar
Fan, D. and Sato, S., ‘Remarks on Littlewood–Paley functions and singular integrals’, J. Math. Soc. Japan 54 (2002), 565585.Google Scholar
Frazier, M., Jawerth, B. and Weiss, G., Littlewood–Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series in Mathematics, 79 (American Mathematical Society, Providence, RI, 1991).Google Scholar
Grafakos, L., Classical and Modern Fourier Analysis (Prentice Hall, Upper Saddle River, NJ, 2003).Google Scholar
Grafakos, L. and Stefanov, A., ‘ L p bounds for singular integrals and maximal singular integrals with rough kernels’, Indiana Univ. Math. J. 47 (1998), 455469.Google Scholar
Gürbüz, F., ‘Parabolic sublinear operators with rough kernel generated by parabolic Calderón-Zygmund operators and parabolic local Campanato space estimates for their commutators on the parabolic generalized local Morrey spaces’, Open Math. 14 (2016), 300323.Google Scholar
Gürbüz, F., ‘Some estimates for generalized commutators of rough fractional maximal and integral operators on generalized weighted Morrey spaces’, Canad. Math. Bull. 60(1) (2017), 131145.Google Scholar
Liu, F., ‘Integral operators of Marcinkiewicz type on Triebel–Lizorkin spaces’, Math. Nachr. 291(1) (2017), 7596.Google Scholar
Liu, F., ‘Rough singular integrals associated to surfaces of revolution on Triebel–Lizorkin spaces’, Rocky Mountain J. Math., to appear.Google Scholar
Liu, F., Fu, Z., Zheng, Y. and Yuan, Q., ‘A rough Marcinkiewicz integral along smooth curves’, J. Nonlinear Sci. Appl. 9 (2016), 44504464.Google Scholar
Liu, F. and Wu, H., ‘Multiple singular integrals and Marcinkiewicz integrals with mixed homogeneity along surfaces’, J. Inequal. Appl. 2012 (2012), 123.CrossRefGoogle Scholar
Liu, F. and Wu, H., ‘On Marcinkiewicz integrals associated to compound mappings with rough kernels’, Acta Math. Sin. (Engl. Ser.) 30 (2014), 12101230.Google Scholar
Liu, F. and Wu, H., ‘ L p bounds for Marcinkiewicz integrals associated to homogeneous mappings’, Monatsh. Math. 181(4) (2016), 875906.Google Scholar
Ricci, R. and Stein, E. M., ‘Harmonic analysis on nilpotent groups and singular integrals I: oscillatory integrals’, J. Funct. Anal. 73 (1987), 179184.Google Scholar
Ricci, F. and Weiss, G., A Characterization of H 1(S n-1), Proceedings of Symposia in Pure Mathematics, 35 (eds. Wainger, S. and Weiss, G.) (American Mathematical Society, Providence, RI, 1979), 289294.Google Scholar
Triebel, H., Theory of Function Spaces, Monographs in Mathematics, 78 (Birkhäser Verlag, Basel, 1983).Google Scholar
Wu, H., ‘ L p bounds for Marcinkiewicz integrals associates to surfaces of revolution’, J. Math. Anal. Appl. 321 (2006), 811827.Google Scholar
Yabuta, K., ‘Triebel–Lizorkin space boundedness of Marcinkiewicz integrals associated to surfaces’, Appl. Math. J. Chinese Univ. Ser. B 30 (2015), 418446.Google Scholar
Zhang, C. and Chen, J., ‘Boundedness of g -functions on Triebel–Lizorkin spaces’, Taiwanese J. Math. 13 (2009), 973981.CrossRefGoogle Scholar
Zhang, C. and Chen, J., ‘Boundedness of Marcinkiewicz integral on Triebel–Lizorkin spaces’, Appl. Math. J. Chinese Univ. Ser. B 25 (2010), 4854.Google Scholar