Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T10:30:53.629Z Has data issue: false hasContentIssue false

Note on monoidal monads

Published online by Cambridge University Press:  09 April 2009

B. J. Day
Affiliation:
Department of Pure Mathematics, University of Sydney, N.S.W. 2006, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The representation theory of categories is used to embed each promonoidal monad in a monoidal biclosed monad. The existence of a promonoidal structure on the ordinary Eilenberg- Moore category generated by a promonoidal monad is examined. Several results by previous authors (notably A. Kock and F. E. J. Linton) are reproved and extended.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1977

References

Bénabou, J. (1967), ‘Introduction to bicategories’, Reports of the Midwest Category Seminar I (Springer Lecture Notes, Vol. 47), 177.CrossRefGoogle Scholar
Day, B. J. and Kelly, G. M. (1969), ‘Enriched functor categories’, Reports of the Midwest Category Seminar III (Springer Lecture Notes, Vol. 106), 178191.CrossRefGoogle Scholar
Day, B. J. (1970a), ‘On closed categories of functors’, Reports of the Midwest Category Seminar IV (Springer Lecture Notes, Vol. 137), 138.Google Scholar
Day, B. J. (1970b), ‘Construction of biclosed categories’, Ph.D. Thesis, University of New South Wales.Google Scholar
Day, B. J. (1973), ‘Note on monoidal localisation’, Bull. Austral. Math. Soc. 8, 116.CrossRefGoogle Scholar
Day, B. J. (1974a), ‘On closed categories of functors II’, Category Seminar, Sydney 1972/73 (Springer Lecture Notes, Vol. 420), 2053.CrossRefGoogle Scholar
Day, B. J. (1974b), ‘An embedding theorem for closed categories’, Category Seminar, Sydney 1972/73 (Springer Lecture Notes, Vol. 420), 5564.CrossRefGoogle Scholar
Dubuc, E. (1970), Kan extensions in enriched category theory (Springer Lecture Notes, Vol. 145).Google Scholar
Eilenberg, S. and Kelly, G. M. (1966), ‘Closed categories’, Proc. Conference on Categorical Algebra, La Jolla, 1965 (Springer-Verlag, 1966), 421562.CrossRefGoogle Scholar
Kelly, G. M. (1974), ‘On clubs and doctrines’, Category Seminar, Sidney 1972/73 (Springer Lecture Notes, Vol. 420), 181256.CrossRefGoogle Scholar
Kock, A. (1970), ‘Monads on symmetric monoidal closed categories’, Archiv der Mathematik, Vol. XXI, 110.Google Scholar
Kock, A. (1971a), ‘Closed categories generated by commutative monads’, J. Austral. Math. Soc, 12, 405424.Google Scholar
Kock, A. (1971b), ‘Bilinearity and cartesian closed monads’, Math. Scand., 29, 161174.CrossRefGoogle Scholar
Linton, F. E. J. (1969), ‘Coequalisers in categories of algebras’, Seminar on Triples and Categorical Homology Theory (Springer Lecture Notes, Vol. 80), 7590.Google Scholar
Street, R. H. (1972), ‘The formal theory of monads’, J. of Pure and Applied Algebra, 2, 149168.Google Scholar