Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T07:12:56.470Z Has data issue: false hasContentIssue false

A note on the Ritz method with an application to overtone stellar pulsation theory

Published online by Cambridge University Press:  09 April 2009

A. L. Andrew
Affiliation:
La Trobe University Melbourne
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Ritz method reduces eigenvalue problems involving linear operators on infinite dimensional spaces to finite matrix eigenvalue problems. This paper shows that for a certain class of linear operators it is possible to choose the coordinate functions so that numerical solution of the matrix equations is considerably simplified, especially when the matrices are large. The method is applied to the problem of overtone pulsations of stars.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1968

References

[1]Wendroff, B., Theoretical numerical analysis (Academic Press, 1966).Google Scholar
[2]Wilkinson, J. H., The algebraic eigenvalue problem (Oxford 1965).Google Scholar
[3]Ledoux, P., ‘Stellar stability’, in Kuiper, G. P., Stars and stellar systems, Vol. 8, Univ. of Chicago Press (1965), 499574.Google Scholar
[4]Ledoux, P. and Pekeris, C. L., ‘Radial pulsations of stars’, Astrophys. J. 94 (1941), 124135.CrossRefGoogle Scholar
[5]Chandrasekhar, S. and Lebovitz, N. R., ‘Non-radial oscillations of gaseous masses’, Astrophys J. 140 (1964), 15171528.CrossRefGoogle Scholar
[6]Ledoux, P., ‘Sur la forme asymptotique des pulsations radiales adiabatiques d'une étoile, I’, Acad. Roy. Belg. Bull. Cl. Sci. 48 (1962), 240254.Google Scholar
[7]Ledoux, P., ‘Sur Ia forme asymptotique des pulsations radiales adiabatiques d'une étoile II. Comportement asymptotique des amplitudes’, Acad. Roy. Beig. Bull. Cl. Sci., 49 (1963), 286302.Google Scholar
[8]Van der Borght, R., ‘The evolution of massive stars initially composed of pure hydrogen’, Austral. J. Phys. 17 (1964), 165174.CrossRefGoogle Scholar
[9]Van der Borght, R., ‘Overtone pulsations of massive stars’, Acad. Roy. Belg. Bull. Cl. Sci. 50 (1964), 959971.Google Scholar
[10]Andrew, A. L., ‘Use of variational methods in the theory of stellar oscillations’, M.Sc. thesis, Australian National University (1966).Google Scholar
[11]Barth, W., Martin, R. S. and Wilkinson, J. H., ‘Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection’, Num. Math. (to appear).Google Scholar
[12]Mikhlin, S. G., Variational methods in mathematical physics (Pergamon Press, Oxford 1964).Google Scholar
[13]Wendroff, B., ‘Bounds for eigenvalues of some differential operators by the Rayleigh-Ritz method’, Math. Comp. 19 (1965), 218224.CrossRefGoogle Scholar
[14]Ledoux, P. and Walraven, Th., ‘Variable stars’, in Flügge, S., Handbuch der Physik, Vol. 51, Springer, Berlin (1958), 353604.Google Scholar
[15]Andrew, A. L., ‘Higher modes of non-radial oscillations of stars by variational methods’, Austral. J. Phys. (to appear).Google Scholar