Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T13:13:01.908Z Has data issue: false hasContentIssue false

ON A FUNCTION MODULE WITH APPROXIMATE HYPERPLANE SERIES PROPERTY

Published online by Cambridge University Press:  03 July 2019

T. GRANDO*
Affiliation:
Department of Mathematics, University of São Paulo, P.O. Box 66281, 05315-970, São Paulo, Brazil email tgrando@ime.usp.br
M. L. LOURENÇO
Affiliation:
Department of Mathematics, University of São Paulo, P.O. Box 66281, 05315-970, São Paulo, Brazil email mllouren@ime.usp.br

Abstract

We present a sufficient and necessary condition for a function module space $X$ to have the approximate hyperplane series property (AHSP). As a consequence, we have that the space ${\mathcal{C}}_{0}(L,E)$ of bounded and continuous $E$-valued mappings defined on the locally compact Hausdorff space $L$ has AHSP if and only if $E$ has AHSP.

Type
Research Article
Copyright
© 2019 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, M. D., Aron, R. M., García, D. and Maestre, M., ‘The Bishop–Phelps–Bollobás theorem for operators’, J. Funct. Anal. 254 (2008), 27802799.Google Scholar
Acosta, M. D., Becerra-Guerrero, J., Choi, Y. S., Ciesielski, M., Kim, S. K., Lee, H. J., Lourenço, M. L. and Martín, M., ‘The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions’, Nonlinear Anal. 95 (2014), 323332.Google Scholar
Acosta, M. D., Becerra-Guerrero, J., García, D., Kim, S. K. and Maestre, M., ‘Bishop–Phelps–Bollobás property for certain spaces of operators’, J. Math. Anal. Appl. 414 (2014), 532545.Google Scholar
Aron, R. M., Cascales, B. and Kozhushkina, O., ‘The Bishop–Phelps–Bollobás theorem and Asplund operators’, Proc. Amer. Math. Soc. 139(10) (2011), 35533560.Google Scholar
Aron, R. M., Choi, Y. S., García, D. and Maestre, M., ‘The Bishop–Phelps–Bollobás theorem for 𝓛(L 1(𝜇), L [0, 1])’, Adv. Math. 228(1) (2011), 617628.Google Scholar
Aron, R. M., Choi, Y. S., Kim, S. K., Lee, H. J. and Martín, M., ‘The Bishop–Phelps–Bollobás version of Lindenstrauss properties A and B’, Trans. Amer. Math. Soc. 367 (2015), 60856101.Google Scholar
Behrends, E., M-Structure and the Banach–Stone Theorem (Springer, Berlin, 1979).Google Scholar
Bishop, E. and Phelps, R. R., ‘A proof that every Banach space is subreflexive’, Bull. Amer. Math. Soc. (N.S.) 67 (1961), 9798.Google Scholar
Bollobás, B., ‘An extension to the theorem of Bishop and Phelps’, Bull. Lond. Math. Soc. 2 (1970), 181182.Google Scholar
Cascales, B., Guirao, A. J. and Kadets, V., ‘A Bishop–Phelps–Bollobás type theorem for uniform algebras’, Adv. Math. 240 (2013), 370382.Google Scholar
Chica, M., Kadets, V., Martín, M., Moreno-Pulido, S. and Rambla-Barreno, F., ‘Bishop–Phelps–Bollobás moduli of a Banach space’, J. Math. Anal. Appl. 412(2) (2014), 697719.Google Scholar
Choi, Y. S. and Kim, S. K., ‘The Bishop–Phelps–Bollobás theorem for operators from L 1(𝜇) to Banach spaces with the Radon–Nikodým property’, J. Funct. Anal. 261(6) (2011), 14461456.Google Scholar
Choi, Y. S. and Kim, S. K., ‘The Bishop–Phelps–Bollobás property and lush spaces’, J. Math. Anal. Appl. 390 (2012), 549555.Google Scholar
Choi, Y. S., Kim, S. K., Lee, H. J. and Martín, M., ‘The Bishop–Phelps–Bollobás theorem for operators on L 1(𝜇)’, J. Funct. Anal. 267(91) (2014), 214242.Google Scholar
Choi, Y. S., Kim, S. K., Lee, H. J. and Martín, M., ‘On Banach spaces with the approximate hyperplane series property’, Banach J. Math. Anal. 9(4) (2015), 243258.Google Scholar
Kim, S. K., ‘The Bishop–Phelps–Bollobás theorem for operators from c 0 to uniformly convex spaces’, Israel J. Math. 197(1) (2013), 425435.Google Scholar
Kim, S. K. and Lee, H. J., ‘Uniform convexity and Bishop–Phelps–Bollobás property’, Canad. J. Math. 66(2) (2014), 372386.Google Scholar
Lindenstrauss, J., ‘On operators which attain their norm’, Israel J. Math. 1 (1963), 139148.Google Scholar