Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T11:43:17.313Z Has data issue: false hasContentIssue false

On Characteristic Morphisms: In Memoriam Thomas Macfarland Cherry

Published online by Cambridge University Press:  09 April 2009

B. H. Neumann
Affiliation:
The Australian National UniversityCanberra, A.C.T.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This note is concerned with a translation of some concepts and results about characteristic subgroups of a group into the language of categories. As an example, consider strictly characteristic and hypercharacteristic subgroups of a group: the subgroup H of the group G is called strictly characteristic in G if it admits all ependomorphisms of G; that is all homomorphic mappings of G onto G; and H is called hypercharacteristic2 in G if it is the least normal subgroup with factor group isomorphic to G/H, that is if H is contained in every normal subgroup K of G with G/KG/H.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1969

References

[1]Baer, Reinhold, ‘The higher commutator subgroups of a group’, Bull. Amer. Math. Soc. 50, (1944) 143160.CrossRefGoogle Scholar
[2]Grothendieck, Alexander, ‘Technique de descente et théorèmes d'existence en géométrie algébrique, I’, Séminaire Bourbaki. 12e aunée, 1959/1960, no. 190.Google Scholar
[3]Levi, Friedrich, ‘Über die Untergruppen der freien Gruppen. 2. Mitteilung’, Math. Zeitschr. 37, (1933) 9097.CrossRefGoogle Scholar
[4]Neumann, B. H., ‘On characteristic subgroups of free groups’, Math. Zeitschr. 94, (1966) 143151.CrossRefGoogle Scholar
[5]Neumann, Bernhard H. und Neumann, Hanna, ‘Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen’, Math. Nachr. 4, (1951) 106125.Google Scholar
[6]Neumann, Peter M., ‘Splitting groups and projectives in varieties of groups’, Quart. J. Math. Oxford (2) 9, 18. (1967) 325332.CrossRefGoogle Scholar
[7]Schmidt, Jürgen, ‘Die überinvarianten und verwandte Kongruenzrelationen einer allgemeinen Algebra’, Math. Annalen 158, (1965) 131157.CrossRefGoogle Scholar