Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T07:11:41.207Z Has data issue: false hasContentIssue false

On convex and starlike functions in a sector

Published online by Cambridge University Press:  09 April 2009

M. Nunokawa
Affiliation:
Department of Mathematics Faculty of EducationGunna UniversityMaebashi, Gunma 371, Japan
D. K. Thomas
Affiliation:
Department of MathematicsUniversity of WalesSwansea SA2 8PPUK e-mail: d.k.thomas@swansea.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f be analytic in D = {z: |z| < 1} with f(0) = f′(0)−1=0. For γ > 0, the largest α (γ) and β(γ) are found such that . The results solve the inclusion problem for convex and starlike functions defined in a sector.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1]Brickman, L., Hallenbeck, D. J., Macgregor, T. M. and Wilken, D. R., ‘Convex hulls and extreme points of families of starlike and convex mappings’, Trans. Amer. Math. Soc. 185 (1973), 413428.CrossRefGoogle Scholar
[2]Macgregor, T. H., ‘A subordination for convex functions of order α’, J. London. Math. Soc. 9 (1975), 530536.CrossRefGoogle Scholar
[3]Marx, A., ‘Untersuchungen über Abbildungen’, Math. Ann. 107 (1932/1933), 4067.CrossRefGoogle Scholar
[4]Miller, S. S., and Mocanu, P. T., ‘Differential subordinations and univalent functions’, Michigan Math. J. 28 (1981), 157171.CrossRefGoogle Scholar
[5]Robinson, R. M., ‘Univalent majorants’, Trans. Amer. Math. Soc. 61 (1947), 135.CrossRefGoogle Scholar
[6]Strohhäcker, E., ‘Beiträge zur Theorie der schlichten Funktionen’, Math. Z. 37 (1933), 356380.CrossRefGoogle Scholar
[7]Wilken, D. R. and Feng, J., ‘A remark on convex and starlike functions’, J. Lond. Math. Soc. 21 (1980), 287290.CrossRefGoogle Scholar