Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T23:37:02.663Z Has data issue: false hasContentIssue false

On finite J-groups

Published online by Cambridge University Press:  09 April 2009

A. Ballester-Bolinches
Affiliation:
Department d'Àlgebra Universitat de ValènciaDr. Moliner, 50 E-46100 Burjassot (València)Spain e-mail: adolfo.ballester@uv.es
R. Esteban-Romero
Affiliation:
Department de Matemàtica Aplicada Universitat Politècnica de ValènciaCamí de Vera, s/n E-46022 ValènciaSpain e-mail: resteban@mat.upv.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Characterisations of finite groups in which normality is a transitive relation are presented in the paper. We also characterise the finite groups in which every subgroup is either permutable or coincides with its permutiser as the groups in which every subgroup is permutable.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Beidleman, J. C. and Robinson, D. J. S., ‘On finite groups satisfying the permutizer condition’, J. Algebra 191 (1997), 686703.CrossRefGoogle Scholar
[2]Bianchi, M., Mauri, A. Gillio Berta, Herzog, M. and Verardi, L., ‘On finite solvable groups in which normality is a transitive relations’, J. Group Theory 3 (2000), 147156.CrossRefGoogle Scholar
[3]Bryce, R. A. and Cossey, J., ‘The Wielandt subgroup of a finite soluble group’, J. London Math. Soc. (2) 40 (1989), 244256.CrossRefGoogle Scholar
[4]Doerk, K. and Hawkes, T., Finite soluble groups, De Gruyter Expositions in Math. 4 (Walter de Gruyter, Berlin, 1992).CrossRefGoogle Scholar
[5]Gaschütz, W., ‘Gruppen, in dennen das Normalteilersein transitiv ist’, J. Reine Angew. Math. 198 (1957), 8792.CrossRefGoogle Scholar
[6]Müller, K. H., ‘Schwachnormale Untergruppen: Eine gemeinsame Verallgemeinerung der normalen und normalisatorgleichen Untergruppen’, Rend. Sem. Mat. Univ. Padova 36 (1966), 129157.Google Scholar
[7]Mysovskikh, V. I., ‘Investigation of subgroup embeddings by the computer algebra package GAP’, in: Computer algebra in scientific computing—CASC'99 (Munich) (Springer, Berlin, 1999) pp. 309315.CrossRefGoogle Scholar
[8]Mysovskikh, V. I., ‘Subnormalizers and embedding properties of subgroups of finite groups’, Zap. Nauchn. Sem. S. -Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 265 (1999), 258280.Google Scholar
[9]Peng, T. A., ‘Finite groups with pronormal subgroups’, Proc. Amer Math. Soc. 20 (1969), 232234.CrossRefGoogle Scholar
[10]Robinson, D. J. S., ‘A note on finite groups in which normality is transitive’, Proc. Amer Math. Soc. 19 (1968), 933937.CrossRefGoogle Scholar
[11]Robinson, D. J. S., A course in the theory of groups (Springer, New York, 1982).CrossRefGoogle Scholar
[12]Rose, J., The abnormal structure of finite groups (Ph.D. Thesis, Cambridge, 1964).Google Scholar
[13]Sementovskiı, V.G., ‘Pronormal subgroups of finite groups’, Vescī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 135 (1973), 1216.Google Scholar