Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-30T19:46:55.343Z Has data issue: false hasContentIssue false

On homomorphisms of an orthogonally decomposable Hilbert space, III

Published online by Cambridge University Press:  09 April 2009

Fumio Hiai
Affiliation:
Division of Applied Mathematics, Research Institute of Applied Electricity Hokkaido University, Sapporo, Japan
Sadayuki Yamamuro
Affiliation:
Department of Mathematics, Institute of Advanced Studies Australian National University, Canberra, ACT, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A hyperfinite von Neumann algebra satisfies the condition that every o.d. homomorphism is a normal operator if and only if it is a factor of type In.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Ando, T., ‘Operators with a norm condition’, Acta Sci. Math. (Szeged) 33 (1972), 169178.Google Scholar
[2]Bratteli, O. and Robinson, D. W., Operator algebras and quantum statistical mechanics I, (Springer-Verlag, Berlin-Heidelberg-New York, 1979).CrossRefGoogle Scholar
[3]Connes, A., ‘Caractérisation des espaces vectoriels ordonnés sous-jacents aux algébres de von Neumann’, Ann. Inst. Fourier, (Grenoble), 24 (1974), 121155.CrossRefGoogle Scholar
[4]Connes, A, ‘Classification of injective factors, cases II1, II, IIIλ, λ ≠ 1’, Ann. of Math. 104 (1976), 73115.CrossRefGoogle Scholar
[5]Dang, T. B. and Yamamuro, S., ‘On homomorphisms of an orthogonally decomposable Hilbert space’, J. Functional Analysis 68 (1986), 366373.CrossRefGoogle Scholar
[6]Dixmier, J., Les algèbres d'opérateurs dan l'espaces hilbertien (Algèbres de von Neumann) (Gauthier-Villars, Paris, 1957).Google Scholar
[7]Kadison, R. V., ‘A generalized Schwarz inequality and algebraic invariants for operator algebras’, Ann. of Math. 56 (1952), 494503.CrossRefGoogle Scholar
[8]Yamamuro, S., ‘Absolute values in orthogonally decomposable spaces’, Bull. Austral. Math. Soc. 31 (1985), 215233.CrossRefGoogle Scholar
[9]Yamamuro, S., ‘On homomorphisms of an orthogonally decomposable Hilbert space II’, J. Austral. Math. Soc., to appear.Google Scholar