Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T16:10:27.813Z Has data issue: false hasContentIssue false

On the Gauss maps of singular projective varieties

Published online by Cambridge University Press:  09 April 2009

E. Ballico
Affiliation:
Department of Mathematics, University of Trento, 38050 Povo (TN), Italy e-mail: ballico@science.unitn.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Here we study the dimension δ(m, X) of the general fibers of the m-Gaussian map of a singular n-dimensional variety X ⊂ Pn. We show that for all integers a, b, c, d with na < bc < dN − 1 and a + d = b + c we have δ (a, X) + δ(d, X) > δ(b, X) + δ(c, X). If δ(X, N − 1) is very large we give some classification results which extend to the singular case some results of Ein.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Beltrametti, M. and Sommese, A. J., The adjunction theory of complex projective varieties (Walter de Gruyter, Berlin, 1995).CrossRefGoogle Scholar
[2]Ein, L., ‘Varieties with small dual varieties, II’, Duke Math. J. 52 (1985), 895907.CrossRefGoogle Scholar
[3]Ein, L., ‘Varieties with small dual varieties, I’, Invent. Math. 86 (1986), 6374.CrossRefGoogle Scholar
[4]Fujita, T., ‘Remarks on quasi-polarized varieties’, Nagoya Math. J. 115 (1989), 105123.CrossRefGoogle Scholar
[5]Gelfand, I. M., Kapranov, M. M. and Zelevinsky, A. V., Discriminants, resultants and multidimensional determinants (Birkhäuser, Boston, 1994).CrossRefGoogle Scholar
[6]Hefez, A. and Kleiman, S. L., ‘Notes on duality for projective varieties’, in: Geometry today (eds. Arbarello, E., Processi, C. and Strickland, E.), Progr. Math. 60 (Birkhäuser, Boston, 1985) pp. 143185.Google Scholar
[7]Johnson, M. L., Higher secant varieties (Ph.D. Thesis, Brandeis University, 1994).Google Scholar
[8]Jouanolou, J.-P., Théorémes de Bertini et applications, Progr. Math. 42 (Birkhäuser, Boston, 1983).Google Scholar
[9]Kaji, H., ‘On the inseparable degrees of the Gauss map and the projection of the conormal variety to the dual of higher order for space curves’, Math. Ann. 292 (1992), 529532.CrossRefGoogle Scholar
[10]Kleiman, S. L., ‘The enumerative theory of singularities’, in: Real and Complex Singularities, Oslo, 1976 (ed. Holm, P.) (Sijitoff and Noordhoof, Alphen aan den Rijn, 1977) pp. 297396.Google Scholar
[11]Kleiman, S. L., ‘Tangency and duality’, in: Proc. 1984 Vancouver Conference in Algebraic Geometry, CMS-AMS Conference Proceedings 6 (Amer. Math. Soc., Providence, RI, 1986).Google Scholar
[12]Kleiman, S. L. and Piene, R., ‘On the inseparability of the Gauss map’, in: Enumerative Algebraic Geometry, Proc. Zeuthen Symposium, Contemp. Math. 123 (Amer. Math. Soc., Providence, RI, 1991) pp. 149160.CrossRefGoogle Scholar
[13]Landsberg, J., ‘Algebraic geometry and projective differential geometry—Seoul National University concentrated lecture series’, preprint math.AG/9809184, 1997.Google Scholar
[14]Tango, H., ‘On (n − 1)-dimensional projective spaces contained in the Grassmann variety Gr(n, 1)’, J. Math. Kyoto Univ. 14 (1974), 415460.Google Scholar
[15]Tango, H., ‘On morphisms from projective space Pn’, J. Math. Kyoto Univ. 16 (1976), 201207.Google Scholar
[16]Zak, F. L., Tangents and secants of algebraic varieties, Transl. Math. Monographs 127 (Amer. Math. Soc., Providence, RI, 1983).Google Scholar