Article contents
ON THE GENERATING GRAPH OF A SIMPLE GROUP
Published online by Cambridge University Press: 26 September 2016
Abstract
The generating graph $\unicode[STIX]{x1D6E4}(H)$ of a finite group $H$ is the graph defined on the elements of $H$, with an edge between two vertices if and only if they generate $H$. We show that if $H$ is a sufficiently large simple group with $\unicode[STIX]{x1D6E4}(G)\cong \unicode[STIX]{x1D6E4}(H)$ for a finite group $G$, then $G\cong H$. We also prove that the generating graph of a symmetric group determines the group.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2016 Australian Mathematical Publishing Association Inc.
Footnotes
The authors were supported by Università di Padova (Progetto di Ricerca di Ateneo: Invariable generation of groups). The second author was also supported by an Alexander von Humboldt Fellowship for Experienced Researchers, by OTKA grants K84233 and K115799, and by the MTA Rényi Lendület Groups and Graphs Research Group.
References
- 6
- Cited by