Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T05:31:35.149Z Has data issue: false hasContentIssue false

On the probability of generating a minimal d-generated group

Published online by Cambridge University Press:  09 April 2009

F. Dalla Volta
Affiliation:
Dipartimento di Matematica e Applicazioni, Università di Milano - Bicocca, Via Bicocca Degli Arcimboldi 8, 20126 Milano, Italy
A. Lucchini
Affiliation:
Dipartimento di Matematica e Applicazioni, Università di Milano - Bicocca, Via Bicocca Degli Arcimboldi 8, 20126 Milano, Italy
F. Morini
Affiliation:
Dipartimento di Matematica, Università di Brescia, Via Valotti 9, 25133 Brescia, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider finite groups with the property that any proper factor can be generated by a smaller number of elements than the group itself. We study some problems related with the probability of generating these groups with a given number of elements.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Aschbacher, M. and Guralnick, R., ‘Some applications of the first cohomology group’, J. Algebra 90 (1984), 446460.CrossRefGoogle Scholar
[2]Volta, F. Dalla and Lucchini, A., ‘Finite groups that need more generators than any proper quotient’, J. Austral. Math. Soc. Ser. A 64 (1998), 8291.CrossRefGoogle Scholar
[3]Volta, F. Dalla and Lucchini, A., ‘The smallest group with non zero presentation rank’, J. Group Theory 2 (1999), 147155.CrossRefGoogle Scholar
[4]Gaschütz, W., ‘Zu einem von B. H. und H. Neumann gestellten Problem’, Math. Nachr. 14 (1955), 249252.CrossRefGoogle Scholar
[5]Gruenberg, K. W. and Roggenkamp, K. W., ‘Decomposition of the relation modules of a finite group’, J. London Math. Soc. (2) 12 (1976), 262266.CrossRefGoogle Scholar
[6]Kantor, W. and Lubotzky, A., ‘The probability of generating a finite classical group’, Geom. Dedicata 36 (1990), 6787.CrossRefGoogle Scholar
[7]Lucchini, A., ‘On groups with d-generators subgroups of coprime index’, Comm. Algebra 28 (2000), 18751880.CrossRefGoogle Scholar
[8]Lucchini, A. and Menegazzo, F., ‘Generators for finite groups with a unique minimal normal subgroup’, Rend. Sem. Mat. Univ. Padova 98 (1997), 173191.Google Scholar
[9]Lucchini, A. and Morini, F., ‘On the probability of generating finite groups with a unique minimal normal subgroup’, Pacific. J. Math. to appear.Google Scholar
[10]Pak, I., ‘On the probability of generating a finite group’, preprint, 2000.Google Scholar