Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T07:21:32.725Z Has data issue: false hasContentIssue false

On the quadratic reciprocity law

Published online by Cambridge University Press:  09 April 2009

G. Rousseau
Affiliation:
The University Leicester, LE1 7RH, England
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A version of Gauss's fifth proof of the quadratic reciprocity law is given which uses only the simplest group-theoretic considerations (dispensing even with Gauss's Lemma) and makes manifest that the reciprocity law is a simple consequence of the Chinese Remainder Theorem.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1991

References

[1]Bachmann, P., Niedere Zahlentheorie I, (Teubner, Leipzig, 1910, reprinted Chelsea, New York, 1968).Google Scholar
[2]Dirichlet, P. G. L., ‘Démonstrations nouvelles de quelques théorèmes relatifs aux nombres’, J. Reine Angew. Math. 3 (1828), 390393.Google Scholar
[3]Gauss, C. F., Werke II, (K. Gesell. Wiss., Göttingen, 1870), 4764.Google Scholar
[4]Schmidt, H., ‘Drei neue Beweise des Reciprocitätssatzes in der Theorie der quadratischen Reste’, J. Reine Angew. Math. 111 (1893), 107120.CrossRefGoogle Scholar