No CrossRef data available.
Article contents
On the relationship between ordinary thin sets and full-thin sets
Published online by Cambridge University Press: 09 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this work we demonstrate that if Ω ⊂ Rn (n ≧ 3) is either a half space or a unit ball, and if E ⊂ ω then E is an ordinary thin set at a boundary point of Ω (including the point at infinity if Ω is a half space) if and only if it is a full-thin set at the corresponding Kuramochi boundary point of Ω. The case for n = 2 has already been considered in an earlier work.
1980 Mathematics subject classification (Amer. Math. Soc.): 31 B 05.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1980
References
Brelot, M. (1944), ‘Sur le role du point à l'infini dans la théorie des fonctions harmoniques’, Ann. Sci. École Norm. Sup. 61, 301–332.CrossRefGoogle Scholar
Brelot, M. (1953), ‘Etude et extensions du principe de Dirichlet’, Ann. Inst. Fourier (Grenoble) 5, 371–419.CrossRefGoogle Scholar
Brelot, M. (1971), On topologies and boundaries in potential theory (Lecture Notes in Mathematics 175, Springer-Verlag, Berlin and New York).CrossRefGoogle Scholar
Constantinescu, C. and Cornea, A. (1963), Ideale Ränder Riemannscher Flächen (Springer-Verlag) (Ergeb. Math. Bd. 32), Berlin.CrossRefGoogle Scholar
Hwang, J. S. and Jackson, H. L. (1978), ‘Some results on Kuramochi thin sets’, An. Acad. Brasil. Ci. 50 (4), 441–445.Google Scholar
Kellogg, O. D. (1929), Foundations of modern potential theory (Springer, Berlin).CrossRefGoogle Scholar
Landkof, N. S. (1972), Foundations of modern potential theory (Springer-Verlag (Grund. Math. Bd. 180), Berlin, New York).CrossRefGoogle Scholar
Maeda, F. Y. (1964), ‘Notes on Green lines and Kuramochi boundary of a Green space’, J.Sci. Hiroshima Univ. Ser. A-1 28, 59–66.Google Scholar
Maeda, F. Y. (1966), ‘Axiomatic treatment of full-superharmonic functions’, J.Sci. Hiroshima Univ. Ser. A-1 30, 197–215.Google Scholar
Maeda, F. Y., Ohtsuka, M. et al. (1968), Kuramochi boundaries of Riemann surfaces (Lecture Notes in Mathematics 58, Springer-Verlag, Berlin and New York).CrossRefGoogle Scholar
Ohtsuka, M. (1964), ‘An elementary introduction of Kuramochi boundary’, J.Sci. Hiroshima Univ. Ser. A-1 28, 271–299.Google Scholar
You have
Access