Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T00:57:45.960Z Has data issue: false hasContentIssue false

On transition multimeasures with values in a Banach space

Published online by Cambridge University Press:  09 April 2009

Nikolaos S. Papageorgiou
Affiliation:
University of CaliforniaDavis, California 95616, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The theory of multimeasures (set valued measures), has its origins in mathematical economics and in particular in equilibrium theory for exchange economies with production, in which the coalitions and not the individual agents are the basic economic units (see Vind [25] and Hildenbrand [15]). Since then the subject of multimeasures has been developed extensively. Important contributions were made, among others, by Artstein [1], Costé [8], [9], Costé and Pallu de la Barrière [10], Drewnowski [12], Godet-Thobie [13], Hiai [14] and Pallu de la Barrière [17]. Further applications in mathematical economics can be found in Klein and Thompson [16] and Papageorgiou [19].

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Artstein, Z., ‘Set-valued measures’, Trans. Amer. Math. Soc. 65 (1972), 103125.Google Scholar
[2]Ash, R., Real analysis and probability (Academic Press, New York, 1972).Google Scholar
[3]Aubin, J.-P. and Ekeland, I., Applied nonlinear analysis (Wiley, New York, 1984).Google Scholar
[4]Aumann, R., ‘Integrals of set valued functions’, J. Math. Anal. Appl. 12 (1965), 112.CrossRefGoogle Scholar
[5]Billingsley, P., Convergence of probability measures (Wiley, New York, 1968).Google Scholar
[6]Blume, L., ‘New techniques for the study of stochastic equilibrium processes’, J. Math. Econom. 9 (1982), 6170.Google Scholar
[7]Bourbaki, N., Theorie des ensembles, Chapter III, (Hermann, Paris, 1963).Google Scholar
[8]Coste, A., ‘Sur l'integration par rapport a une multimesure de Radon’, C. R. Acad. Sci. Paris 278 (1974), 545548.Google Scholar
[9]Costé, A., ‘Sur les multimeasures a valeurs fermes bornes d'un espace de Banach’, C.R. Acad. Sci. Paris 280 (1975), 567570.Google Scholar
[10]Costé, A. and de la Barrière, R. Pallu, ‘Radon-Nikodym theorems for set valued measures whose values are convex and closed’, Comment. Math. 20 (1978), 283309.Google Scholar
[11]Diestel, J. and Uhl, J. ‘Vector measures,’ Math. Surveys Vol. 15, (Amer. Math. Soc. Providence, R. I., 1975).Google Scholar
[12]Drewnowski, L., ‘Additive and countably additive correspondences’, Comment. Math. 19 (1976), 2554.Google Scholar
[13]Godet-Thobie, C., ‘Some results about multimeasures and their selectors’, Measure theory—Oberwolfach 1979 edited by Kölzow, D., pp. 112116, (Notes in Math., vol. 794, 1980).CrossRefGoogle Scholar
[14]Hiai, F., ‘Radon-Nikodym theorems for set valued measures’, J. Multivariate Anal. 8 (1978), 96118.Google Scholar
[15]Hildenbrand, W., Core and equilibria of a large economy (Princeton Univ. Press, Princeton, N.J., 1974).Google Scholar
[16]Klein, E. and Thompson, A., Theory of correspondences (Wiley, New York, 1984).Google Scholar
[17]de la Barrière, R. Pallu, ‘Étude de quelques propriétés liées à l'ordre dans des espaces des multi-mesures à valeurs convexes fermées’, C. R. Acad. Sic. Paris 281 (1975), 951954.Google Scholar
[18]Papageorgiou, N. S., ‘On the theory of Banach space valued multifunctions, Part 1: Integration and conditional expectation’, J. Multivariate Anal. 17 (1985), 185206.CrossRefGoogle Scholar
[19]Papageorgiou, N. S., ‘Efficiency and optimality in economies described by coalitions’, J. Math. Anal. 116 (1986), 497512.CrossRefGoogle Scholar
[20]Papageorgiou, N. S., ‘A relaxation theorem for differential inclusions in Banach spaces’, Tôhoku Math. J. 39 (1987), 505517.Google Scholar
[21]Parthasarathy, K. R., Probability measures on metric spaces (Academic Press, New York, 1967).CrossRefGoogle Scholar
[22]Saint-Beuve, M.-F., ‘On the extension of Von Neumann-Aumann's theorem’, J. Funct. Anal. 17 (1974), 112129.Google Scholar
[23]Saint-Beuve, M.-F., ‘Some topological properties of vector measures with bounded variation and its applications’, Ann. Mat. Pura Appl. 116 (1978), 317379.CrossRefGoogle Scholar
[24]Salinetti, G. and Wets, R., ‘On the relation between two types of convergence of convex functions’, J. Math. Anal. Appl. 60 (1977), 211226.Google Scholar
[25]Vind, K., ‘Edgeworth allocations in an exchange economy with many traders’, Internat. Econom. Rev. 5 (1964), 165177.CrossRefGoogle Scholar
[26]Wagner, D., ‘Survey of measurable selection theorems’, SIAM J. Control Optim. 15 (1977), 859903.CrossRefGoogle Scholar