Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T03:34:37.530Z Has data issue: false hasContentIssue false

Operators and the space of integrable scalar functions with respect to a Fréchet-valued measure

Published online by Cambridge University Press:  09 April 2009

Antonio Fernández
Affiliation:
Department Matemática Aplicada II, Escuela Superior de Ingenieros, Camino de los Descubrimientos, s/n 41092-Sevilla, Spain e-mail: anfercar@matinc.us.es
Francisco Naranjo
Affiliation:
Department Matemática Aplicada II, Escuela Superior de Ingenieros, Camino de los Descubrimientos, s/n 41092-Sevilla, Spain e-mail: anfercar@matinc.us.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the space L1 (ν, X) of all real functions that are integrable with respect to a measure v with values in a real Fréchet space X. We study L-weak compactness in this space. We consider the problem of the relationship between the existence of copies of l in the space of all linear continuous operators from a complete DF-space Y to a Fréchet lattice E with the Lebesgue property and the coincidence of this space with some ideal of compact operators. We give sufficient conditions on the measure ν and the space X that imply that L1 (ν, X) has the Dunford-Pettis property. Applications of these results to Fréchet AL-spaces and Köthe sequence spaces are also given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Aliprantis, C. D. and Burkinshaw, O., Locally solid Riesz spaces, Pure Appl. Math., Vol. 76 (Academic Press, Orlando, Florida, 1978).Google Scholar
[2]Aliprantis, C. D. and Burkinshaw, O., Positive operators, Pure Appl. Math., Vol. 119 (Academic Press, Orlando, Florida, 1985).Google Scholar
[3]Bartle, R. G., Dunford, N. S. and Schwartz, J. T., ‘Weak compactness and vector measures’, Canad. J. Math. 7 (1955), 289305.CrossRefGoogle Scholar
[4]Bonet, J., Domański, P. and Lindström, M., ‘Cotype and complemented copies of c 0 in spaces of operators’, Czechoslovak Math. J. 46 (1996), 271289.CrossRefGoogle Scholar
[5]Bonet, J., Domański, P., Lindström, M. and Ramanujan, M. S., ‘Operator spaces containing c 0 or l ’, Resultate Math. 28 (1995), 250269.CrossRefGoogle Scholar
[6]Bonet, J. and Lindström, M., ‘Spaces of operators between Fréchet spaces’, Math. Proc. Camb. Phil. Soc. 115 (1994), 133144.CrossRefGoogle Scholar
[7]Chi, G. Y. H., ‘A geometric characterization of Fréchet spaces with the Radon-Nikodým property’, Proc. Amer. Math. Soc. 48 (1975), 371380.Google Scholar
[8]Constantinescu, C., Spaces of measures, Studies in Mathematics 4 (de Gruyter, Berlin, New York, 1984).CrossRefGoogle Scholar
[9]Curbera, G. P., ‘Operators into L 1 of a vector measure and applications to Banach lattices’, Math. Ann. 292 (1992), 317330.CrossRefGoogle Scholar
[10]Curbera, G. P., ‘Banach space properties of L 1 of a vector measure’, Proc. Amer. Math. Soc. 123 (1995), 37973806.Google Scholar
[11]Diestel, J. and Uhl, J. J., Vector measures, Math. Surveys Monographs, Vol. 15 (Amer. Math. Soc., Providence, RI, 1977).CrossRefGoogle Scholar
[12]Dodds, P. G., de Pagter, B. and Ricker, W. J., ‘Reflexivity and order properties of scalar-type spectral operators in locally convex spaces’, Trans. Amer. Math. Soc. 293 (1986), 355380.CrossRefGoogle Scholar
[13]Fernández, A. and Naranjo, F., ‘Rybakov's theorem for vector measures in Fréchet spaces’, Indag. Math. (N.S.) 8 (1997), 3342.CrossRefGoogle Scholar
[14]Grosse-Erdmann, K. G., ‘Lebesgue's theorem of differentiation in Fréchet lattices’, Proc. Amer. Math. Soc. 112 (1991), 371379.Google Scholar
[15]Jarchow, H., Locally convex spaces (Teubner, Stuttgart, 1981).CrossRefGoogle Scholar
[16]Kalton, N., ‘Spaces of compact operators’, Math. Ann. 208 (1974), 267278.CrossRefGoogle Scholar
[17]Kluvánek, I., ‘Characterization of the closed convex hull of the range of a vector-valued measure’, J. Funct. Anal. 21 (1976), 316329.CrossRefGoogle Scholar
[18]Kluvánek, I. and Knowles, G., Vector measures and control systems, Notas de Matemática, Vol. 58 (North-Holland, Amsterdam, 1975).Google Scholar
[19]Lewis, D. R., ‘Integration with respect to vector measures’, Pacific. J. Math. 33 (1970), 157165.CrossRefGoogle Scholar
[20]Luxemburg, W. A. and Zaanen, A. C., Riesz spaces I (North-Holland, Amsterdam, 1971).Google Scholar
[21]Meyer-Nieberg, P., Banach lattices (Universitext, Springer, Berlin, Heidelberg, New York, 1991).CrossRefGoogle Scholar
[22]Tweddle, I., ‘Weak compactness in locally convex spaces’, Glasgow Math. J. 9 (1968), 123127.CrossRefGoogle Scholar
[23]Zaanen, A. C., Riesz spaces II (North-Holland, Amsterdam, 1983).Google Scholar