Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T17:06:22.205Z Has data issue: false hasContentIssue false

Paschke's conjecture for the endpoint anisotropic series representations of the free group

Published online by Cambridge University Press:  09 April 2009

M. Gabriella Kuhn
Affiliation:
Dipartimento di Matematica Università di Milano “Bicocca”Viale Sarca 202 20126 MilanoItalia e-mail: kuhn@matapp.unimib.it
Tim Steger
Affiliation:
Struttura di Matematica e Fisica Università di SassariVia Vienna 2 07100 SassariItalia e-mail: steger@ssmain.uniss.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Γ be a free noncommutative group with free generating set A+. Let μ ∈ ℓ1(Γ) be real, symmetric, nonnegative and suppose that supp. Let λ be an endpoint of the spectrum of μ considered as a convolver on ℓ2(Γ). Then λ − μ is in the left kernel of exactly one pure state of the reduced in particular, Paschke's conjecture holds for λ − μ.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Figà-Talamanca, A. and Picardello, A. M., Harmonic analysis on free groups, Lecture Notes in Pure and Appl. Math. 87 (Marcel Dekker, New York, 1983).Google Scholar
[2]Figà-Talamanca, A. and Steger, T., ‘Harmonic analysis for anisotropic random walks on homogeneous trees’, Mem. Amer. Math. Soc. 110 (1994), No. 531.Google Scholar
[3]Haagerup, U., ‘An example of a nonnuclear C*-algebra which has the metric approximation property’, Invent. Math. 50 (1979), 279293.CrossRefGoogle Scholar
[4]Kuhn, M. G. and Steger, T., ‘More irreducible boundary representations of free groups’, Duke Math. J. 82 (1996), 381436.CrossRefGoogle Scholar
[5]Kuhn, M. G. and Steger, T., ‘Monotony of certain free group representations’, J. Funct. Anal. 179 (2001), 117.CrossRefGoogle Scholar
[6]Paschke, W., ‘Pure eigenstates for the sum of generators of the free group’, Pacific J. Math. 197 (2001), 151171.CrossRefGoogle Scholar
[7]Paschke, W., ‘Some irreducible free group representations in which a linear combination of the generators has an eigenvalue’, J. Aust. Math. Soc. 72 (2002), 257286.CrossRefGoogle Scholar
[8]Powers, R. T., ‘Simplicity of the C*-algebra associated with the free group on two generators’, Duke Math. J. 42 (1975), 151156.CrossRefGoogle Scholar