Published online by Cambridge University Press: 20 April 2015
Let $P$ be a finitely generated cancellative abelian monoid. A $P$-graph ${\rm\Lambda}$ is a natural generalization of a $k$-graph. A pullback of ${\rm\Lambda}$ is constructed by pulling it back over a given monoid morphism to $P$, while a pushout of ${\rm\Lambda}$ is obtained by modding out its periodicity, which is deduced from a natural equivalence relation on ${\rm\Lambda}$. One of our main results in this paper shows that, for some $k$-graphs ${\rm\Lambda}$, ${\rm\Lambda}$ is isomorphic to the pullback of its pushout via a natural quotient map, and that its graph $\text{C}^{\ast }$-algebra can be embedded into the tensor product of the graph $\text{C}^{\ast }$-algebra of its pushout and $\text{C}^{\ast }(\text{Per}\,{\rm\Lambda})$. As a consequence, in this case, the cycline algebra generated by the standard generators corresponding to equivalent pairs is a maximal abelian subalgebra, and there is a faithful conditional expectation from the graph $\text{C}^{\ast }$-algebra onto it.