Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T17:21:29.804Z Has data issue: false hasContentIssue false

Positive linear operators and the approximation of continuous functions on locally compact abelian groups

Published online by Cambridge University Press:  09 April 2009

Walter R. Bloom
Affiliation:
School of Mathematical and Physical Sciences, Murdoch University, Murdoch, Western Australia 6153, Australia
Joseph F. Sussich
Affiliation:
School of Mathematical and Physical Sciences, Murdoch University, Murdoch, Western Australia 6153, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1953 P. P. Korovkin proved that if (Tn) is a sequence of positive linear operators defined on the space C of continuous real 2π-periodic functions and limn→rTnf = f uniformly for f = 1, cos and sin. then limnrTnf = f uniformly for all fC. We extend this result to spaces of continuous functions defined on a locally compact abelian group G, with the test family {1, cos, sin} replaced by a set of generators of the character group of G.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

Freud, G. (1964), ‘Über positive lineare Approximationsfolgen von stetigen reelen Funktionen auf kompakten Mengen’, On approximation theory, proceeding of the conference held at the Mathematical Research Institute at Oberwolfach, 4–10 August 1963 (editors Butzer, P. L. and Korevaar, J.), pp. 233238 (Birkhäuser Verlag, Basel).Google Scholar
Hewitt, Edwin and Ross, Kenneth A. (1963), Abstract harmonic analysis, Volume I (Die Grundlehren der mathematichen Wissenchaften, Band 115, Springer-Verlag, Göttingen, Heidelberg).Google Scholar
Hewitt, Edwin and Ross, Kenneth A. (1970), Abstract harmonic analysis, Volume II (Die Grundlehren der mathematischen Wissenschaften. Band 152, Springer-Verlag, Berlin, Heidelberg, New York).Google Scholar
Heyer, Hebert (1977), Probability measures on locally compact groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 94, Springer-Verlag, Berlin, Heideberg, New York).Google Scholar
Kendall, David and Lamperti, John (1970), ‘A remark on topologies for characteristic functions’, Proc. Cambridge Philos. Soc. 68, 703705.CrossRefGoogle Scholar
Korovkin, P. P. (1960), Linear operators and approximation theory (translated from the Russian edition (1959), Hindustan Publishing Corporation (India), Delhi).Google Scholar