Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T15:58:37.444Z Has data issue: false hasContentIssue false

‘POSITIVELY HOMOGENOUS LATTICE HOMOMORPHISMS BETWEEN RIESZ SPACES NEED NOT BE LINEAR’

Published online by Cambridge University Press:  08 July 2016

MOHAMED ALI TOUMI*
Affiliation:
Département de Mathématiques, Faculté des Sciences de Bizerte, 7021, Zarzouna, Bizerte, Tunisia email MohamedAli.Toumi@fsb.rnu.tn
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Reply
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

References

Ben Amor, F., ‘Comment on “Positively homogenous lattice homomorphisms between Riesz spaces need not be linear”’, J. Aust. Math. Soc. to appear.Google Scholar
Ercan, Z. and Wickstead, A. W., ‘When a lattice homomorphism is a Riesz homomorphism’, Math. Nachr. 279 (2006), 10241027.Google Scholar
Lochan, R. and Strauss, D., ‘Lattice homomorphisms of spaces of continuous functions’, J. Lond. Math. Soc. 25 (1982), 379384.Google Scholar
Mena, R. and Roth, B., ‘Homomorphisms of lattices of continuous functions’, Proc. Amer. Math. Soc. (2) 71 (1978), 1112.Google Scholar
Thanh, D. T., ‘A generalization of a theorem of R. Mena and R. Roth’, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 34 (1992), 167171.Google Scholar
Toumi, M. A., ‘When lattice homomorphisms of Archimedean vector lattices are Riesz homomorphisms’, J. Aust. Math. Soc. 87 (2009), 263273.Google Scholar