Article contents
Preorders on canonical families of modules of finite length
Published online by Cambridge University Press: 09 April 2009
Abstract
Let R be an artinian ring. A family, ℳ, of isomorphism types of R-modules of finite length is said to be canonical if every R-module of finite length is a direct sum of modules whose isomorphism types are in ℳ. In this paper we show that ℳ is canonical if the following conditions are simultaneously satisfied: (a) ℳ contains the isomorphism type of every simple R-module; (b) ℳ has a preorder with the property that every nonempty subfamily of ℳ with a common bound on the lengths of its members has a smallest type; (c) if M is a nonsplit extension of a module of isomorphism type II1 by a module of isomorphism type II2, with II1, II2 in ℳ, then M contains a submodule whose type II3 is in ℳ and II1 does not precede II3. We use this result to give another proof of Kronecker's theorem on canonical pairs of matrices under equivalence. If R is a tame hereditary finite-dimensional algebra we show that there is a preorder on the family of isomorphism types of indecomposable R-modules of finite length that satisfies Conditions (b) and (c).
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1992
References
- 1
- Cited by