Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T05:14:01.032Z Has data issue: false hasContentIssue false

Quasi θ-spaces and pairwise θ-perfect irreducible mappings

Published online by Cambridge University Press:  09 April 2009

A. Kandil
Affiliation:
Benha University, Egypt
E. E. Kerre
Affiliation:
Seminar for Mathematics Analysis
M. E. El-Shafei
Affiliation:
State University of Gent, Belgium
A. A. Nouh
Affiliation:
Mansoura University, Egypt
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we extend the notion of perfect, θ-continuous, irreducible and θ-perfect mappings to bitopological spaces. The main result is the following: the (small) image of an (i, j)-canonical open sets is an (i, j)-canonical open set under a pairwise θ-closed irreducible surjective mapping. Also we extend the notion of θ-proximity spaces to quasi θ-proximity spaces and point out the interrelation between it and separated quasi-proximity spaces by means of a pairwise θ-perfect irreducible mappings.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1992

References

[1]Cooke, I. E. and Reilly, I. L., ‘On bitopological compactness’, J. London Math. Soc. 2 (9) (1975), 518522.CrossRefGoogle Scholar
[2]Datta, M. C., ‘Projective bitopological spaces II’, J. Austral. Math. Soc. 14 (1972), 119128.CrossRefGoogle Scholar
[3]Engelking, R., General Topology, Warszawa, 1977.Google Scholar
[4]Fedorcuk, V. V., ‘θ-spaces and perfect irreducible mappings of topological spaces’, Soviet Math. Dokl. 8 (3) (1967), 684686.Google Scholar
[5]Fedorcuk, V. V., ‘Perfect irreducible mappings and generalized proximities’, Soviet Math. Dokl., 9 (3) (1968), 661664.Google Scholar
[6]Fedorcuk, V. V., ‘Uniform spaces and perfect irreducible mappings of topological spaces’, DAN SSSR 192 (1970), 12281230.Google Scholar
[7]Fedorcuk, V. V., ‘On H-closed extension of θ-proximity spaces’, Math. Sbornik 89 (1972), 400418.Google Scholar
[8]Fletcher, P., Hoyle, H. B. and Patty, C. W., ‘The comparison of topologies’, Duke Math. J. 36 (1969), 325331.CrossRefGoogle Scholar
[9]Kandil, A., On dimension of θ-spaces, Ph.D. Thesis, Moscow University, 1977.Google Scholar
[10]Kelly, J. C., ‘Bitopological spaces’, Proc. London Math. Soc. 13 (1963), 7189.CrossRefGoogle Scholar
[11]Kim, Y. M., ‘Pairwise compactness’, Pub. Math. Debrecen 15 (1968), 8790.CrossRefGoogle Scholar
[12]Lane, E. P., ‘Quasi-proximities and bitopological spaces’, Portugal. Math. 28 (1969), 151159.Google Scholar
[13]Pervin, W. J., ‘Quasi-proximities for topological spaces’, Math. Ann. 150 (1963) 325326.CrossRefGoogle Scholar
[14]Singal, K. and Singal, A. R., ‘Some separation axioms in bitopological spaces’, Ann. Soc. Sci. Bruxelles 84 (1970), 207230.Google Scholar
[15]Swart, J., ‘Total disconnectedness in bitopological spaces and product bitopological spaces’, Indag. Math. 33 (1971), 135145.CrossRefGoogle Scholar