Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T07:04:57.516Z Has data issue: false hasContentIssue false

Radical decompositions of idempotent algebras

Published online by Cambridge University Press:  09 April 2009

B. J. Gardner
Affiliation:
Mathematics Department University of TasmaniaG.P.O. Box 252C Hobart, Tasmania 7001, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A variant of Kurosh-Amitsur radical theory is developed for algebras with a collection of (finitary) operations ω, all of which are idempotent, that is satisfy the condition ω(x, x,…, x) = x. In such algebras, all classes of any congruence are subalgebras. In place of a largest normal radical subobject, a largest congruence with radical congruence classes is considered. In congruence-permutable varieties the parallels with conventional radical theory are most striking.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1984

References

[1]Arhangeĺskii, A. V. and Wiegandt, R., ‘Connectednesses and disconnectednesses in topology’, General Topology and Appl. 5 (1975), 933.CrossRefGoogle Scholar
[2]Birkhoff, G., Lattice theory (Amer. Math. Soc. Colloq. Publ. XXV, 1948).Google Scholar
[3]Burris, S. and Sankappanavar, H. P., A course in universal algebra (Springer, 1981).CrossRefGoogle Scholar
[4]Clifford, A. H., ‘Radicals in semigroups’, Semigroup Forum 1 (1970), 103127.Google Scholar
[5]Csákány, B., ‘Varieties of affine modules’, Acta Sci. Math. (Szeged) 37 (1975), 310.Google Scholar
[6]Csákány, B. and Megyesi, L., ‘Varieties of idempotent medial quasigroups’, Acta Sci. Math. (Szeged) 37 (1975), 1723.Google Scholar
[7]Dubreil, P., ‘Contribution à la théorie des demi-groupes (II)’, Rend. Mat. (5) 10 (1951), 183199.Google Scholar
[8]Fried, E. and Wiegandt, R., ‘Connectednesses and disconnectednesses in graphs’, Algebra Universalis 5 (1975), 411428.Google Scholar
[9]Gardner, B. J., ‘Semi-simple radical classes of algebras and attainability of identities’, Pacific J. Math. 61 (1975), 401416.CrossRefGoogle Scholar
[10]Gardner, B. J., ‘Extension-closed varieties of rings need not have attainable identities’, Bull. Malaysian Math. Soc. (2) 2 (1979), 3739.Google Scholar
[11]Gardner, B. J., ‘Extension-closure and attainability for varieties of algebras with involution’, Comment. Math. Univ. Carolinae 21 (1980), 285292.Google Scholar
[12]Hoehnke, H.-J., ‘Radikale in aligemeinen Algebren’, Math. Nachr. 32 (1966), 347383.Google Scholar
[13]Howie, J. M., An introduction to semigroup theory (Academic Press, 1976).Google Scholar
[14]Kogalovskii, S. R., ‘Structural characteristics of universal classes’, Sibirsk. Mat. Ž. 4 (1963), 97119 (in Russian).Google Scholar
[15]Kuros, A. G., ‘Radicals in the theory of groups’, Colloq. Math. Soc. János Bolyai 6 (Rings, Modules and Radicals, Keszthely, 1971), 271296.Google Scholar
[16]McLean, D., ‘Idempotent semigroups’, Amer. Math. Monthly 61 (1954), 110113.CrossRefGoogle Scholar
[17]Maĺcev, A. I., The metamathematics of algebraic systems (North-Holland, 1971).Google Scholar
[18]Márki, L., ‘Radical semisimple classes and varieties of semigroups with zero’, Colloq. Math. Soc. János Bolyai 20 (Algebraic Theory of Semigroups, Szeged, 1976), 357369.Google Scholar
[19]Márki, L., Mlitz, R. and Strecker, R., ‘Strict radicals of monoids’, Semigroup Forum 21 (1980), 2766.Google Scholar
[20]Mlitz, R., ‘Kurosch-Amitsur-Radikale in der universalen Algebra’, Publ. Math. Derecen 24 (1977), 333341.CrossRefGoogle Scholar
[21]Mlitz, R., ‘Radicals and semi-simple classes of Ω-groups’, Proc. Edinburgh Math. Soc. (2) 23 (1980), 3741.Google Scholar
[22]Neumann, H., Varieties of groups (Springer, 1967).Google Scholar
[23]Ostermann, F. and Schmidt, J., ‘Der baryzentrische Kalkül als axiomatische Grundlage der affinen Geometrie’, J. Reine Angew. Math. 224 (1966), 4457.Google Scholar
[24]Petrich, M., ‘A construction and a classification of bands’, Math. Nachr. 48 (1971), 263274.Google Scholar
[25]Ruedin, J., ‘Equivalences de Green et demi-treillis images homomorphes maximales d'un groupoide distributif’, C. R. Acad. Sci. Paris Sér. A 264 (1967), 429432.Google Scholar
[26]Soublin, J. P., ‘Étude algébrique de la notion de moyenne’, J. Math. Pures Appl. 50 (1971), 53264.Google Scholar
[27]Strecker, R., ‘M-Radikale von universalen Algebren’, Publ. Math. Debrecen 26 (1979), 245254.CrossRefGoogle Scholar
[28]Szász, F., ‘On radicals of semigroups with zero I’, Proc. Japan Acad. 46 (1970), 595598.CrossRefGoogle Scholar
[29]Szendrei, A., ‘Torsion theories in affine categories’, Acta Math. Acad. Sci. Hungar. 30 (1977), 351369.CrossRefGoogle Scholar
[30]Tamura, T., ‘Attainability of systems of identities on semigroups’, J. Algebra 3 (1966), 261276.Google Scholar
[31]Tamura, T., ‘Note on attainability of identities on bands’, J. Algebra 28 (1974), 19.Google Scholar
[32]Thierrin, G., ‘Sur le théorie des demi-groupes’, Comment. Math. Helv. 30 (1956), 211223.Google Scholar
[33]Wiegandt, R., Radical and semisimple classes of rings (Queen's University, Kingston, Ontario, 1974).Google Scholar