Published online by Cambridge University Press: 09 April 2009
Motivated by work of Garsia and Lamperti we consider null-recurrent renewal sequences with a regularly varying tail and seek information about their rate of convergence to zero. The main result shows that such sequences subject to a monotonicity condition obey a limit law whatever the value of the exponent α is, 0 < α < 1. This monotonicity property is seen to hold for a large class of renewal sequences, the so-called Kaluza sequences. This class includes moment sequences, and therefore includes the sequences generated by reversible Markov chains. Several subsidiary results are proved.