Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T17:44:43.475Z Has data issue: false hasContentIssue false

Rational approximations to e

Published online by Cambridge University Press:  09 April 2009

C. S. Davis
Affiliation:
University of QueenslandSt. Lucia Brisbane
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The greatest lower bound (in fact, ½) is found of constants k such that for an infinity of rationals p/q.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1978

References

Adams, W. W. (1966), “Asymptotic diophantine approxiamtion to eProc. Nat. Acad. Sci. U.S.A. 55, 2831.CrossRefGoogle ScholarPubMed
Bundschuh, P., (1971) “Irrationalitätsmasze für eaa#0 rational oder Liouville-ZahlMath. Ann. 20, 229242.CrossRefGoogle Scholar
Davis, C. S. (1945), “On some simple continued fractions connected with e”, J. Lond. Math. Soc. 20, 194198.CrossRefGoogle Scholar
Euler, L. (1937), “De fractionibus continuisComm. Acad. Sc. Imp. Petrop. 9 (Op. Ser. 1, Vol. 14).Google Scholar
Hurwiz, A. (1891), “Ueber die Kettenbruch-Entwicklung der Zahl ePhys.-ökon, Ges., Königsberg (Werke, Bd. II).Google Scholar
Hurwitz, A. (1896), “Über die Kettenbrü;che, deren Teilnenner arithmetische Reihen bilden” Vierteljahresschrift d. naturforsch. Gesellschaft, Zürich (Werke, Bd. II).Google Scholar
Mahler, K., (1932), “Zur Approximation der Exponentialfunktion und des Logarithmus, I und II,” J. reine angew. Math. 166, 118136, 137–150.CrossRefGoogle Scholar
Mahler, K. (1953), “On the approximation of пProc. Akad. Wetensch. Ser. A 56, 3042.Google Scholar
Perron, O. (1954). Die Lehre von den Kettenbrüchen., Bd. I, 3. Aufl. (B. G. Teubner, Stuttgart), 123126.Google Scholar
Perron, O. (1957), Die Lehre von den Kettenbrüchen, Bd. II, 3. Aufl. (B. G. Teubner, Stuttgart), 244248.Google Scholar
Sundman, K. F. (1895), “Utvecklingarna af e och e2 uti kedhebrak med alla partialtälhare lika met ettÜfversigt af Finska Vetenskapssocietatens Förhandlingar 38.Google Scholar
Walters, F. C. (1968), “Alternative derivation of some regular continued frations”, J. Aust. Math. Soc. 8, 205212.CrossRefGoogle Scholar