Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T22:07:58.203Z Has data issue: false hasContentIssue false

Regular skew group rings

Published online by Cambridge University Press:  09 April 2009

Ricardo Alfaro
Affiliation:
Department of Mathematics, University of Michigan-Flint, Flint, MI 48502, U.S.A.
Pere Ara
Affiliation:
Department de Matemàtiques, Universitat Autònoma de Barcelona, (08193) Bellaterra (Barcelona), Spain
Angel Del Río
Affiliation:
Department de Matemàtiqus, Universidad de Murcia, (30001) Murcia, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a group acting on a ring R. We study the problem of determining necessary and sufficient conditions in order that the skew group ring RG be von Neumann regular. Complete characterizations are given in some particular situations, including the case where all idempotents of R are central. For a regular ring R admitting a G-invariant pseudo-rank function N, with G finite, we obtain a necessary condition for RG being regular in terms of the induced action of G on the N-completion of R.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Alfaro, R., ‘States on skew group rings and fixed rings’, Comm. Algebra 18 (1990), 33813394.CrossRefGoogle Scholar
[2]Auslander, M., ‘On regular group rings’, Proc. Amer. Math. Soc. 8 (1957), 658664.CrossRefGoogle Scholar
[3]Beattie, M., ‘A generalization of the smash product of a graded ring’, J. Pure Appl. Algebra 52 (1988), 219226.CrossRefGoogle Scholar
[4]Cohen, M. and Montgomery, S., ‘Group-graded rings, smash products and group actions’, Trans. Amer. Math. Soc. 282 (1984), 237258.CrossRefGoogle Scholar
[5]Connell, I. G., ‘On the group ring’, Canad. J. Math. 15 (1963), 650685.CrossRefGoogle Scholar
[6]DeMeyer, F., ‘Some notes on the general Galois theory of rings’, Osaka J. Math. 2 (1965), 117127.Google Scholar
[7]Goodearl, K. R., ‘Centers of regular self-injective rings’, Pacific J. Math. 76 (1978), 381395.CrossRefGoogle Scholar
[8]Goodearl, K. R., Von Neumann regular rings (Pitman, London, 1979).Google Scholar
[9]Goursaud, J. M., Osterburg, J., Pascaud, J. L. and Valette, J., ‘Points fixes des anneaux reguliers auto-injectifs à gauche’, Comm. Algebra 9 (1981), 13431394.CrossRefGoogle Scholar
[10]Kado, J., ‘Pseudo-rank functions on crossed products of finite groups over regular rings’, Osaka J. Math. 22 (1985), 821833.Google Scholar
[11]Montgomery, S., Fixed rings of finite automorphism groups of associative rings, volume818 of Lecture Notes in Mathematics (Springer, Berlin, 1980).CrossRefGoogle Scholar
[12]Năstăsescu, C., ‘Group rings of graded rings, applications’, J. Pure Appl. Algebra 33 (1984), 315335.CrossRefGoogle Scholar
[13]Năstăsescu, C., Van der Bergh, M. and Van Oystaeyen, F., ‘Seperable functors, applications to graded rings and modules’, J. Algebra 123 (1989), 397413.CrossRefGoogle Scholar
[14]Năstăsescu, C. and Van Oystaeyen, F., Graded ring theory (North-Holland, Amsterdam, 1982).Google Scholar
[15]Osterburg, J., ‘Fixed rings of simple rings’, Comm. Algebra 6 (1978), 17411750.CrossRefGoogle Scholar
[16]Osterburg, J., ‘Smash products and G-Galois actions’, Proc. Amer. Math. Soc. 98 (1986), 217221.Google Scholar
[17]Page, A., ‘Action de groupe’, Seminaire d'Algebra P. Dubreil, volume740 of Lecture Notes in Mathematics (Springer, Berlin, 1979).Google Scholar
[18]Passman, D. S., The algebraic structure of group rings (Wiley, New York, 1977).Google Scholar
[19]Passman, D. S., Infinite crossed products, volume 135 of Pure and Applied Mathematics (Academic Press, New York, 1989).Google Scholar
[20]Rafael, M. D., ‘Separable functors revisited’, Comm. Algebra 18 (1990), 14451549.CrossRefGoogle Scholar
[21]Villamayor, O. E., ‘On weak dimension of algebras’, Pacific J. Math. 9 (1959), 941951.CrossRefGoogle Scholar