Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T11:50:09.445Z Has data issue: false hasContentIssue false

Representation theorems for the weierstrass transform

Published online by Cambridge University Press:  09 April 2009

Z. Ditzian
Affiliation:
Department of Mathematics, University of Alberta, Canada
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we shall be interested in the Weierstrass transform defined by (1.1.) converging (conditionally) for x in some interval, where (1.2) .

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1972

References

[1]Erdélyi, (and others), Tables of integral transforms, Vol. I (McGraw Hill, 1954).Google Scholar
[2]Heinig, H. P., ‘Representation of functions as Weierstrass-transforms’, Canadian Mathematical Bulletin 10 (1967), 711722.CrossRefGoogle Scholar
[3]Hirschman, I. I. and Widder, D. V., The Convolution Transform (Princeton Univ. Press, 1955).Google Scholar
[4]Nessel, R. J., ‘Ueber die Darstellung holomorpher Funktionen durch Weierstrass and Weierstrass-Stieltjes Integrale’, Journal fur die reine und angewandte Mathematik (1965), 31–50.CrossRefGoogle Scholar
[5]Pollard, H., ‘Representation as Gaussian integral’, Duke Math. Jour. 10 (1943), 5965.CrossRefGoogle Scholar
[6]Widder, D. V., The Laplace transform. (Princeton Univ. Press, 1946).Google Scholar
[7]Widder, D. V., ‘Necessary and sufficient conditions for representation of a function by a Weierstrass transform’, Trans. Amer. Math. Soc. 71 (1951), 430439.CrossRefGoogle Scholar
[8]Widder, D. V., ‘Weierstrass transforms positive functions’, Proc. of Nat. Acad. of Science 37 (1951), 315317.CrossRefGoogle ScholarPubMed