Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T16:28:43.601Z Has data issue: false hasContentIssue false

REPRESENTING REGULAR PSEUDOCOMPLEMENTED KLEENE ALGEBRAS BY TOLERANCE-BASED ROUGH SETS

Published online by Cambridge University Press:  04 December 2017

JOUNI JÄRVINEN*
Affiliation:
Sirkankuja 1, 20810 Turku, Finland email jouni.kalervo.jarvinen@gmail.com
SÁNDOR RADELECZKI*
Affiliation:
Institute of Mathematics, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary email matradi@uni-miskolc.hu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that any regular pseudocomplemented Kleene algebra defined on an algebraic lattice is isomorphic to a rough set Kleene algebra determined by a tolerance induced by an irredundant covering.

Type
Research Article
Copyright
© 2017 Australian Mathematical Publishing Association Inc. 

References

Balbes, R. and Dwinger, Ph., Distributive Lattices (University of Missouri Press, Columbia, Missouri, 1974).Google Scholar
Brignole, D. and Monteiro, A., ‘Caracterisation des algèbres de Nelson par des egalités I’, Proc. Japan Acad. 43 (1967), 279283.Google Scholar
Cignoli, R., ‘The class of Kleene algebras satisfying an interpolation property and Nelson algebras’, Algebra Universalis 23 (1986), 262292.Google Scholar
Cignoli, R. and de Gallego, M. S., ‘The lattice structure of some Łukasiewicz algebras’, Algebra Universalis 13 (1981), 315328.Google Scholar
Comer, S. D., ‘On connections between information systems, rough sets, and algebraic logic’, Banach Center Publ. 28 (1993), 117124.Google Scholar
Davey, B. A. and Priestley, H. A., Introduction to Lattices and Order, 2nd edn (Cambridge University Press, Cambridge, 2002).Google Scholar
Düntsch, I., ‘A logic for rough sets’, Theoret. Comput. Sci. 179 (1997), 427436.CrossRefGoogle Scholar
Erné, M., Koslowski, J., Melton, A. and Strecker, G. E., ‘A primer on Galois connections’, Ann. New York Acad. Sci. 704 (1993), 103125.Google Scholar
Gehrke, M. and Walker, E., ‘On the structure of rough sets’, Bull. Pol. Acad. Sci. Math. 40 (1992), 235245.Google Scholar
Grätzer, G., General Lattice Theory, 2nd edn (Birkhäuser, Basel, 1998).Google Scholar
Iturrioz, L., ‘Rough sets and three-valued structures’, in: Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa (ed. Orłowska, E.) (Physica-Verlag, Heidelberg, 1999), 596603.Google Scholar
Järvinen, J., ‘Knowledge representation and rough sets’, PhD Thesis, Department of Mathematics, University of Turku, Finland, 1999.Google Scholar
Järvinen, J., ‘Lattice theory for rough sets’, Trans. Rough Sets VI (2007), 400498.Google Scholar
Järvinen, J. and Radeleczki, S., ‘Representation of Nelson algebras by rough sets determined by quasiorders’, Algebra Universalis 66 (2011), 163179.Google Scholar
Järvinen, J. and Radeleczki, S., ‘Rough sets determined by tolerances’, Internat. J. Approx. Reason. 55 (2014), 14191438.Google Scholar
Järvinen, J. and Radeleczki, S., ‘Tolerances induced by irredundant coverings’, Fund. Inform. 137 (2015), 341353.Google Scholar
Järvinen, J., Radeleczki, S. and Veres, L., ‘Rough sets determined by quasiorders’, Order 26 (2009), 337355.Google Scholar
Kalman, J. A., ‘Lattices with involution’, Trans. Amer. Math. Soc. 87 (1958), 485491.Google Scholar
Katrin̆ák, T., ‘The structure of distributive double p-algebras. Regularity and congruences’, Algebra Universalis 3 (1973), 238246.Google Scholar
Monteiro, A., ‘Construction des algébres de Nelson finies’, Bull. Pol. Acad. Sci. Math. 11 (1963), 359362.Google Scholar
Monteiro, A., ‘Sur les algèbres de Heyting symétriques’, Port. Math. 39 (1980), 1237.Google Scholar
Pagliani, P., ‘Rough set systems and logic-algebraic structures’, in: Incomplete Information: Rough Set Analysis (ed. Orłowska, E.) (Physica-Verlag, Heidelberg, 1998), 109190.Google Scholar
Pawlak, Z., ‘Rough sets’, Internat. J. Comput. Inform. Sci. 11 (1982), 341356.Google Scholar
Pomykała, J. and Pomykała, J. A., ‘The Stone algebra of rough sets’, Bull. Pol. Acad. Sci. Math. 36 (1988), 495512.Google Scholar
Sankappanavar, H. P., ‘Pseudocomplemented Ockham and De Morgan algebras’, MLQ Math. Log. Q. 32 (1986), 385394.Google Scholar
Varlet, J., ‘A regular variety of type 〈2, 2, 1, 1, 0, 0〉’, Algebra Universalis 2 (1972), 218223.Google Scholar