Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T01:39:01.941Z Has data issue: false hasContentIssue false

SAMPLING AND BIRKHOFF REGULAR PROBLEMS

Published online by Cambridge University Press:  15 December 2009

M. H. ANNABY*
Affiliation:
Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt (email: mannaby@qu.edu.qa, mhannaby@yahoo.com)
S. A. BUTERIN
Affiliation:
Department of Mathematics, Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia (email: buterinsa@info.sgu.ru)
G. FREILING
Affiliation:
Fachbereich Mathematik, Universität Duisburg-Essen, D-47057 Duisburg, Germany (email: freiling@math.uni-duisburg.de)
*
For correspondence; e-mail: mannaby@qu.edu.qa,mhannaby@yahoo.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We establish new sampling representations for linear integral transforms associated with arbitrary general Birkhoff regular boundary value problems. The new approach is developed in connection with the analytical properties of Green’s function, and does not require the root functions to be a basis or complete. Unlike most of the known sampling expansions associated with eigenvalue problems, the results obtained are, generally speaking, of Hermite interpolation type.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association, Inc. 2009

References

[1]Annaby, M. H., ‘Interpolation expansions associated with nonselfadjoint problems’, Commun. Appl. Anal. 3 (1999), 545561.Google Scholar
[2]Annaby, M. H., ‘On sampling theory associated with the resolvents of singular Sturm–Liouville problems’, Proc. Amer. Math. Soc. 131 (2003), 18031812.CrossRefGoogle Scholar
[3]Annaby, M. H. and Butzer, P. L., ‘On sampling associated with singular Sturm–Liouville eigenvalue problems: the limit circle case’, Rocky Mountain J. Math. 32 (2002), 443466.CrossRefGoogle Scholar
[4]Annaby, M. H. and Freiling, G., ‘Sampling expansions associated with Kamke problems’, Math. Z. 234 (2000), 163189.CrossRefGoogle Scholar
[5]Annaby, M. H. and Freiling, G., ‘Sampling integro-differential transforms arising from second order differential operators’, Math. Nachr. 216 (2000), 2543.3.0.CO;2-V>CrossRefGoogle Scholar
[6]Annaby, M. H. and Freiling, G., ‘A sampling theorem for transforms with discontinuous kernels’, Appl. Anal. 83 (2004), 10531075.CrossRefGoogle Scholar
[7]Annaby, M. H., Freiling, G. and Zayed, A. I., ‘Discontinuous boundary value problems: expansion and sampling theorems’, J. Integral Equations Appl. 16 (2004), 123.CrossRefGoogle Scholar
[8]Annaby, M. H. and Zayed, A. I., ‘On the use of Green’s function in sampling theory’, J. Integral Equations Appl. 10 (1998), 117139.CrossRefGoogle Scholar
[9]Benzinger, H. E., ‘Pointwise and norm convergence of a class of biorthonormal expansions’, Trans. Amer. Math. Soc. 231 (1977), 259271.CrossRefGoogle Scholar
[10]Birkhoff, G. D., ‘Boundary value and expansion problems of ordinary linear differential equations’, Trans. Amer. Math. Soc. 9 (1908), 373395.CrossRefGoogle Scholar
[11]Boas, R. P., Entire Functions (Academic Press, New York, 1954).Google Scholar
[12]Butzer, P. L., ‘A survey of the Whittaker–Shannon sampling theorem and some of its extensions’, J. Math. Res. Exposition 3 (1983), 185212.Google Scholar
[13]Butzer, P. L., Schmeisser, G. and Stens, R. L., ‘An introduction to sampling analysis’, in: Nonuniform Sampling, Theory and Practice (ed. F. Marvesti) (Kluwer/Plenum, New York, 2001), pp. 17121.CrossRefGoogle Scholar
[14]Butzer, P. L. and Schöttler, G., ‘Sampling theorems associated with fourth and higher order selfadjoint eigenvalue problems’, J. Comput. Appl. Math. 51 (1994), 159177.CrossRefGoogle Scholar
[15]Campbell, L. L., ‘A comparison of the sampling theorems of Kramer and Whittaker’, SIAM J. Appl. Math. 12 (1964), 117130.CrossRefGoogle Scholar
[16]Coddington, E. A. and Levinson, N., Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955).Google Scholar
[17]Everitt, W. N., García, A. G. and Hernández-Medina, M. A., ‘On Lagrange interpolation series and analytic Kramer kernels’, Results Math. 51(3–4) (2008), 215228.CrossRefGoogle Scholar
[18]Everitt, W. N. and Nasri-Roudsari, G., ‘Interpolation and sampling theories, and linear ordinary boundary value problems’, in: Sampling Theory in Fourier and Signal Analysis: Advanced Topics (eds. J. R. Higgins and R. L. Stens) (Oxford University Press, Oxford, 1999), pp. 96129.CrossRefGoogle Scholar
[19]Everitt, W. N. and Nasri-Roudsari, G., ‘Sturm–Liouville problems with coupled boundary conditions and Lagrange interpolation series: II’, Rend. Mat. Roma 20 (2000), 199238.Google Scholar
[20]Everitt, W. N. and Poulkou, A., ‘Kramer analytic kernels and first-order boundary value problems’, J. Comput. Appl. Math. 148 (2002), 2247.CrossRefGoogle Scholar
[21]Everitt, W. N., Schöttler, G. and Butzer, P. L., ‘Sturm–Liouville boundary value problems and Lagrange interplation series’, Rend. Mat. Roma (14) 7 (1994), 87126.Google Scholar
[22]Fiedler, H., ‘Zur Regularität selbstadjungierter Randwertaufgaben’, Manuskripta Math. 7 (1972), 185196.CrossRefGoogle Scholar
[23]García, A. G. and Hernández-Medina, M. A., ‘A general sampling theorem associated with differential operators’, J. Comput. Anal. Appl. 1(3) (1999), 147161.Google Scholar
[24]Grozev, G. R. and Rahman, Q. I., ‘Reconstruction of entire functions from irregular spaced sampled points’, Canad. J. Math. 48(4) (1996), 777793.CrossRefGoogle Scholar
[25]Grozev, G. R. and Rahman, Q. I., ‘Hermite interpolation and an inequality for entire functions of exponential type’, J. Inequal. Appl. 1 (1997), 149164.Google Scholar
[26]Haddad, A., Yao, K. and Thomas, J., ‘General methods for the derivation of the sampling theorem’, IEEE Trans. Inform. Theory IT-13 (1967), 227230.CrossRefGoogle Scholar
[27]Higgins, J. R., Sampling Theory in Fourier and Signal Analysis: Foundations (Oxford University Press, Oxford, 1996).CrossRefGoogle Scholar
[28]Higgins, J. R., ‘Notes on the derivation of sampling theorems from non-selfadjoint boundary value problems’, SAMPTA’99, Loen, Norway, August 11–14 (1999), pp. 221–226.Google Scholar
[29]Higgins, J. R., ‘A sampling principle associated with Saitoh’s fundamental theory of linear transformations’, in: Analytic Extension Formulas and their Applications (Fukuoka, 1999/Kyoto, 2000), International Society for Analysis, Applications and Computation, 9 (Kluwer Academic Publishers, Dordrecht, 2001), pp. 7386.CrossRefGoogle Scholar
[30]Higgins, J. R., Schmeisser, G. and Voss, J. J., ‘The sampling theorem and several equivalent results in analysis’, J. Comput. Anal. Appl. 2 (2000), 333371.Google Scholar
[31]Hinsen, G., ‘Abtastsätze mit unregelmäßigen Rekonstruktionsformeln, Konvergenzaussagen und Fehlerbetrachtungen’, PhD Thesis, Aachen, 1993.Google Scholar
[32]Hinsen, G., ‘Irregular sampling of bandlimited L p-functions’, J. Approx. Theory 72 (1993), 346364.CrossRefGoogle Scholar
[33]Hinsen, G. and Klösters, D., ‘The sampling series as a limiting case of Lagrange interpolation’, Appl. Anal. 72 (1993), 346364.Google Scholar
[34]Kadec, M. I., ‘The exact value of the Paley–Wiener constant’, Soviet Math. Dokl. 5 (1964), 559561.Google Scholar
[35]Kesel’man, G. M., ‘On the unconditional convergence of eigenfunction expansions of certain differential operators’, Izv. Vysš. Učebn. Zaved. Mat. 39 (1964), 8293 (in Russian).Google Scholar
[36]Kramer, H. P., ‘A generalized sampling theorem’, J. Math. Phys. 38 (1959), 6872.CrossRefGoogle Scholar
[37]Levin, B., Distribution of Zeros of Entire Functions (American Mathematical Society, Providence, RI, 1964).CrossRefGoogle Scholar
[38]Levinson, N., Gap and Density Theorems (American Mathematical Society, Providence, RI, 1940).CrossRefGoogle Scholar
[39]Mikhailov, V. P., ‘On Riesz bases in L 2(0,1)’, Soviet Math. Dokl. 3 (1962), 851855.Google Scholar
[40]Minkin, A., ‘Odd and even cases of Birkhoff-regularity’, Math. Nachr. 174 (1995), 219230.CrossRefGoogle Scholar
[41]Naimark, M. A., Linear Differential Operators. Part I: Elementary Theory of Linear Differential Operators (Frederick Ungar, New York, 1967).Google Scholar
[42]Paley, R. and Wiener, N., Fourier Transforms in the Complex Domain, American Mathematical Society Colloquium Publications, 19 (American Mathematical Society, Providence, RI, 1934).Google Scholar
[43]Salaff, S., ‘Regular boundary conditions for ordinary differential operators’, Trans. Amer. Math. Soc. 134(2) (1968), 355373.Google Scholar
[44]Tamarkin, J. D., ‘On some general problems of the theory of ordinary equations’, Petrograd, 1917 (in Russian).Google Scholar
[45]Tamarkin, J. D., ‘Some general problems of the theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions’, Math. Z. 27 (1927), 154.CrossRefGoogle Scholar
[46]Voss, J. J., ‘Irreguläres Abtasten: Fehleranalyse, Anwendungen und Erweiterungen’, PhD thesis, Erlangen, 1999.Google Scholar
[47]Voss, J. J., ‘Error analysis for nonuniform sampling expansions’, Proceedings of the 1999 International Workshop on Sampling Theory and Applications (Loen, Norway, 1999), pp. 227–233.Google Scholar
[48]Weiss, P., ‘Sampling theorems associated with Sturm–Liouville systems’, Bull. Amer. Math. Soc. 63 (1957), 242.Google Scholar
[49]Zayed, A. I., El-Sayed, M. A. and Annaby, M. H., ‘On Lagrange interpolations and Kramer’s sampling theorem associated with selfadjoint boundary value problems’, J. Math. Anal. Appl. 158 (1991), 269284.CrossRefGoogle Scholar
[50]Zayed, A. I., Hinsen, G. and Butzer, P. L., ‘On Lagrange interpolation and Kramer-type sampling theorem associated Sturm–Liouville problems’, SIAM J. Appl. Math. 50 (1990), 893909.CrossRefGoogle Scholar