Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T13:16:02.817Z Has data issue: false hasContentIssue false

Saturation on locally compact abelian groups

Published online by Cambridge University Press:  09 April 2009

Walter R. Bloom
Affiliation:
School of Mathematical and Physical Sciences Murdoch UniversityPerth, Western Australia 6150, Australia
Joseph F. Sussich
Affiliation:
School of Mathematical and Physical Sciences Murdoch UniversityPerth, Western Australia 6150, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a locally compact abeian group, (μρ) a net of bounded Radon measures on G. In this paper we consider conditions under which (μρ) is saturated in Lp (G) and apply these results to the Fejér and Picard approximation processes.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1985

References

[1]Berg, Christian and Forst, Gunnar, Potential theory on locally compact abelian groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 87, Springer-Verlag, Berlin, Heidelberg, New York, 1975).CrossRefGoogle Scholar
[2]Buchwalter, Henri, ‘Saturation sur un groupe abélien localement compact’, C. R. Acad. Sci. Paris 250 (1960), 808810.Google Scholar
[3]Butzer, Paul L. and Nessel, Rolf J., Fourier analysis and approximation, Volume 1, One-dimensional theory (Birkhäuser, Basel, Stuttgart, 1971).CrossRefGoogle Scholar
[4]DeVore, Ronald A., The approximation of continuous functions by positive linear operators (Lecture Notes in Mathematics, 293, Springer-Verlag, Berlin, Heidelberg, New York, 1972).CrossRefGoogle Scholar
[5]Dreseler, Bernd and Schempp, Walter, ‘Saturation on locally compact abelian groups’, Manuscripta Math. 7 (1972), 141174.CrossRefGoogle Scholar
[6]Dreseler, Bernd and Schempp, Walter, ‘Approximation on double coset spaces’ in Approximation Theory (Papers, VIth Semester, Stefan Banach Intemat. Math. Center, Warsaw, 1975), pp. 6981, Banach Center Publ., 4, PWN, Warsaw, 1979.Google Scholar
[7]Hewitt, Edwin and Ross, Kenneth A., Abstract harmonic analysis, Volumes I, II (Die Grundlehren der Mathematischen Wissenschaften, Bände 115, 152. Academic Press, New York; Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963, 1970.)Google Scholar
[8]Nishishiraho, Toshihiko, ‘Saturation of positive linear operators’, Töhoku Math. J. 28 (1976), 239243.Google Scholar