Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T21:10:34.208Z Has data issue: false hasContentIssue false

Some entire functions with fixpoints of every order

Published online by Cambridge University Press:  09 April 2009

I. N. Baker
Affiliation:
Imperial College of Science and Technology, London
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper f(z) will always stand for an entire transcendental function of the complex variable z. For p= 1, 2, … the natural iterate fD(z) of f(z) is defined by These natural iterates are themselves entire transcendental functions; they have been studied by various writers, notably Fatou [3]. References to many papers on iterated will be found in [1].

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1960

References

[1]Baker, I. N., Zusammensetzungen ganzer Funktionen. Math. Zeit. 69, 121163 (1958).CrossRefGoogle Scholar
[2]Baker, I. N., Fixpoints and iterates of entire functions. Math. Zeit. 71, 146153 (1959).CrossRefGoogle Scholar
[3]Fatou, P., Sur l'itération des fonctions transcendantes entières. Acta math. 47, 337–370 (1926)CrossRefGoogle Scholar
[4]Nevanlinna, R., Eindeutige analytische Funktionen. 2 Aufl. Berlin, Springer 1953.CrossRefGoogle Scholar
[5]Pólya, G., On an integral function of an integral function. J. London Math. Soc. 1, 1215 (1926).CrossRefGoogle Scholar
[6]Ullrich, E., Sitzungsberichte preuss. Akad. M. P. Klasse. 1929 (592608).Google Scholar