Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T06:57:28.217Z Has data issue: false hasContentIssue false

THE SPECTRA OF THE SPHERICAL AND EUCLIDEAN TRIANGLE GROUPS

Published online by Cambridge University Press:  01 April 2007

MARK HARMER*
Affiliation:
Department of Mathematics, Australian National University, Canberra, Australia (email: harmer.mark@gmail.com)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We derive the spectrum of the Laplace–Beltrami operator on the quotient orbifold of the nonhyperbolic triangle groups.

Type
Research Article
Copyright
Copyright © 2007 Australian Mathematical Society

References

[1]Cooper, S. and Lam, H. Y., ‘Sums of two, four, six and eight squares and triangular numbers: an elementary approach’, Indian J. Math. 44 (2002), 2140.Google Scholar
[2]Eisenstein, G., ‘Aufgaben und Lehrsätze’, Crelle’s J. 27 (1844), 281283.Google Scholar
[3]Grosswald, E., Representations of Integers as Sums of Squares (Springer, New York, 1985).CrossRefGoogle Scholar
[4]Hardy, G. H., Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work (Cambridge University Press, Cambridge, 1940).Google Scholar
[5]Hejhal, D. A., ‘Eigenvalues of the Laplacian for Hecke triangle groups’, Mem. Amer. Math. Soc. 97(469) (1992), vi+165 .Google Scholar
[6]Hirschhorn, M. D., ‘Three classical results on representations of a number’, Sém. Lothar. Combin. 42 (1999), 8 (electronic).Google Scholar
[7]Lamé, M. G., Leçons sur la Théorie Mathématique de l’Elasticité des Corps Solides (Gauthier-Villars, Paris, 1866).Google Scholar
[8]Maass, H., ‘Über eine neue art von nichtanalytischen automorphen funktionen und die bestimmung Dirichletscher reihen durch funktionalgleichungen’, Math. Ann. 121 (1949), 141183.CrossRefGoogle Scholar
[9]McCartin, B. J., ‘Eigenstructure of the equilateral triangle, part 1: the Dirichlet problem’, SIAM Rev. 45(2) (2003), 267287.CrossRefGoogle Scholar
[10]Pinsky, M. A., ‘The eigenvalues of an equilateral triangle’, SIAM J. Math. Anal. 11(5) (1980), 819827.CrossRefGoogle Scholar
[11]Pinsky, M. A., ‘Completeness of the eigenfunctions of the equilateral triangle’, SIAM J. Math. Anal. 16(4) (1985), 848851.CrossRefGoogle Scholar
[12]Práger, M., ‘Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle’, Appl. Math. 43(4) (1998), 311320.CrossRefGoogle Scholar
[13]Selberg, A., ‘Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series’, J. Indian Math. Soc. 20 (1956), 4787.Google Scholar
[14]Vilenkin, N. J., Special Functions and the Theory of Group Representations (American Mathematical Society, Providence, RI, 1968).CrossRefGoogle Scholar