Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T05:55:15.785Z Has data issue: false hasContentIssue false

Spectral and asymptotic properties of dominated operators

Published online by Cambridge University Press:  09 April 2009

Frank Räbiger
Affiliation:
Mathematisches Institut Universität TübingenAuf der Morgenstelle 10 D-72076 TübingenGermanyfrra@michelangelo.mathematik.uni-tuebingen.de manfred.wolff@uni-tuebingen.de
Manfred P. H. Wolff
Affiliation:
Mathematisches Institut Universität TübingenAuf der Morgenstelle 10 D-72076 TübingenGermanyfrra@michelangelo.mathematik.uni-tuebingen.de manfred.wolff@uni-tuebingen.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the relationship between the peripheral spectrum of a positive operator T on a Banach lattice E and the peripheral spectrum of the operators S dominated by T, that is, ]Sx] ≤ T]x] for all x ε E. This can be applied to obtain inheritance results for asymptotic properties of dominated operators.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1997

References

[1]Aliprantis, C. D. and Burkinshaw, O., ‘On weakly compact operators on Banach lattices’, Proc. Amer. Math. Soc. 83 (1981), 573578.CrossRefGoogle Scholar
[2]Aliprantis, C. D., Positive operators (Academic Press, London, 1985).Google Scholar
[3]Andreu, F., Caselles, V., Martinz, J. and Mazon, J. M., ‘The essential specturm of AM-compact operators’, Indag. Math. (N.S.) 2 (1991), 149158.CrossRefGoogle Scholar
[4]Bukhvalov, A. V., ‘Integral representations of linear operators’, J. Soviet. Math. 8 (1978), 129137.CrossRefGoogle Scholar
[5]Caselles, V., ‘On the peripheral spectrum of positive operators’, Israel J. Math. 58 (1987), 144160.CrossRefGoogle Scholar
[6]Clément, Ph., Heijmans, H. J. A. M., Angenent, S., van Duijn, C. J. and de Pagter, B., One-parameter semigroups (North-Holland, Amsterdam, 1987).Google Scholar
[7]Dodds, P. G. and Fremlin, D. H., ‘Compact operators in Banach lattices’, Israel J. Math. 34 (1979), 287320.CrossRefGoogle Scholar
[8]Dunford, N., ‘Spectral theory. I Convergence to projections’, Trans. Amer. Math. Soc. 54 (1943), 185217.Google Scholar
[9]Eberlein, W. F., ‘Abstract ergodic theorems and weak almost periodic functions’, Trans. Amer. Math. Soc. 67 (1949), 217240.Google Scholar
[10]Emilion, R., ‘Mean bounded operators and mean ergodic theorems’, J. Funct. Anal. 61 (1985), 114.Google Scholar
[11]Gohberg, I., Goldberg, S. and Kaashoek, M. A., Classes of linear operators, 1 (Birkhäuser, Basel, 1990).Google Scholar
[12]Greiner, G., Über das Spektrum stark stetiger Halbgruppen positiver Operatoren (Dissertation, Tübingen, 1980).Google Scholar
[13]Haid, W., Sätze vom Radon-Nikodym-Typ für Operatoren auf Banachverbänden (Dissertation, Tübingen, 1982).Google Scholar
[14]Kalton, N. J. and Saab, P., ‘Ideal properties of regular operators between Banach lattices’, Illinois J. Math. 29 (1985), 382400.CrossRefGoogle Scholar
[15]Katznelson, Y. and Tzafriri, L., ‘On power bounded operators’, J. Funct. Anal. 68 (1986), 313328.CrossRefGoogle Scholar
[16]Krengel, U., Ergodic theorems (de Gruyter, Berlin, 1985).Google Scholar
[17]Martinez, J., ‘The essential spectral radius of dominated positive operators’, Proc. Amer. Math. Soc. 118 (1993), 419426.CrossRefGoogle Scholar
[18]Martinez, J. and Mazon, J. M., ‘Quasi-compactness of dominated positive operators and C 0-semi-groups’, Math. Z. 207 (1991), 109120.CrossRefGoogle Scholar
[19]Meyer-Nieberg, P., Banach lattices (Springer, Berlin, 1991).CrossRefGoogle Scholar
[20]de Pagter, B., ‘The components of a positive operator’, Indag. Math. 86 (1983), 229241.CrossRefGoogle Scholar
[21]de Pagter, B. and Schep, A. R., ‘Measures of non-compactness of operators on Banach lattices’, J. Funct. Anal. 78 (1988), 3155.Google Scholar
[22]Räbiger, F., Absolutstetigkeit und Ordnungsabsolutstetigkeit von Operatoren, Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Math.-Naturwiss. Klasse, Jahrgang 1991, 1. Abhandlung, 1132, (Springer, Berlin, 1991).Google Scholar
[23]Räbiger, F., ‘Stability and ergodicity of dominated semigroups, I. The uniform case’, Math. Z. 214 (1993), 4354.Google Scholar
[24]Räbiger, F., ‘Stability and ergodicity of dominated semigroups, II. The strong case’, Math. Ann. 297 (1993), 103116.Google Scholar
[25]Räbiger, F., ‘Attractors and asymptotic periodicity of positive operators on Banach lattices’, Forum Math. 7 (1995), 665683.CrossRefGoogle Scholar
[26]Schaefer, H. H., Banach lattices and positive operators (Springer, Berlin, 1974).Google Scholar
[27]Schep, A. R., Kernel operators (Ph. D. Thesis, University of Leiden, Netherlands, 1977).Google Scholar
[28]Zaanen, A. C., Riesz spaces II (North-Holland, Amsterdam, 1983).Google Scholar