Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T12:04:19.414Z Has data issue: false hasContentIssue false

STOCHASTIC NONLINEAR SCHRÖDINGER EQUATION WITH ALMOST SPACE–TIME WHITE NOISE

Published online by Cambridge University Press:  21 June 2019

JUSTIN FORLANO
Affiliation:
Maxwell Institute for Mathematical Sciences, Department of Mathematics, Heriot-Watt University, Edinburgh, EH14 4AS, UK email j.a.forlano@sms.ed.ac.uk
TADAHIRO OH*
Affiliation:
School of Mathematics, The University of Edinburgh and The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK email hiro.oh@ed.ac.uk
YUZHAO WANG
Affiliation:
School of Mathematics, University of Birmingham, Watson Building, Edgbaston, Birmingham, B15 2TT, UK email y.wang.14@bham.ac.uk

Abstract

We study the stochastic cubic nonlinear Schrödinger equation (SNLS) with an additive noise on the one-dimensional torus. In particular, we prove local well-posedness of the (renormalized) SNLS when the noise is almost space–time white noise. We also discuss a notion of criticality in this stochastic context, comparing the situation with the stochastic cubic heat equation (also known as the stochastic quantization equation).

Type
Research Article
Copyright
© 2019 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

J. F. was supported by the Maxwell Institute Graduate School in Analysis and its Applications, a Centre for Doctoral Training funded by the UK Engineering and Physical Sciences Research Council (grant EP/L016508/01), the Scottish Funding Council, Heriot-Watt University and the University of Edinburgh. T. O. was supported by the European Research Council (grant no. 637995 ‘ProbDynDispEq’).

References

Agrawal, G. P., Nonlinear Fiber Optics, 5th edn (Academic Press, San Francisco, CA, 2012).Google Scholar
Bass, R., Stochastic Processes, Cambridge Series in Statistical and Probabilistic Mathematics, 33 (Cambridge University Press, Cambridge, 2011).Google Scholar
Bényi, Á. and Oh, T., ‘Modulation spaces, Wiener amalgam spaces, and Brownian motions’, Adv. Math. 228(5) (2011), 29432981.Google Scholar
Bényi, Á., Oh, T. and Pocovnicu, O., ‘Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ3’, Trans. Amer. Math. Soc. Ser. B 6 (2019), 114160.Google Scholar
Bényi, Á., Oh, T. and Pocovnicu, O., ‘On the probabilistic Cauchy theory for nonlinear dispersive PDEs’, in: Landscapes of Time–Frequency Analysis, Applied and Numerical Harmonic Analysis (Birkhäuser–Springer, Cham, 2019), 132.Google Scholar
Bourgain, J., ‘Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations’, Geom. Funct. Anal. 3 (1993), 107156.Google Scholar
Bourgain, J., ‘Periodic nonlinear Schrödinger equation and invariant measures’, Comm. Math. Phys. 166(1) (1994), 126.Google Scholar
Bourgain, J., ‘Invariant measures for the 2D-defocusing nonlinear Schrödinger equation’, Comm. Math. Phys. 176(2) (1996), 421445.10.1007/BF02099556Google Scholar
Brzeźniak, Z. and Peszat, S., ‘Space–time continuous solutions to SPDE’s driven by a homogeneous Wiener process’, Studia Math. 137(3) (1999), 261299.Google Scholar
Catellier, R. and Chouk, K., ‘Paracontrolled distributions and the 3-dimensional stochastic quantization equation’, Ann. Probab. 46(5) (2018), 26212679.Google Scholar
Cheung, K. and Mosincat, R., ‘Stochastic nonlinear Schrödinger equations on tori’, Stoch. Partial Differ. Equ. Anal. Comput. (2018), doi:10.1007/s40072-018-0125-x.Google Scholar
Christ, M., ‘Power series solution of a nonlinear Schrödinger equation’, in: Mathematical Aspects of Nonlinear Dispersive Equations, Annals of Mathematical Studies, 163 (Princeton University Press, Princeton, NJ, 2007), 131155.Google Scholar
Christ, M., Colliander, J. and Tao, T., ‘Instability of the periodic nonlinear Schrödinger equation’, Preprint, arXiv:math/0311227v1 [math.AP].Google Scholar
Colliander, J. and Oh, T., ‘Almost sure well-posedness of the cubic nonlinear Schrödinger equation below L 2(𝕋)’, Duke Math. J. 161(3) (2012), 367414.Google Scholar
Da Prato, G. and Debussche, A., ‘Two-dimensional Navier–Stokes equations driven by a space–time white noise’, J. Funct. Anal. 196(1) (2002), 180210.Google Scholar
Da Prato, G. and Debussche, A., ‘Strong solutions to the stochastic quantization equations’, Ann. Probab. 31(4) (2003), 19001916.Google Scholar
Da Prato, G. and Zabczyk, J., Stochastic Equations in Infinite Dimensions, 2nd edn, Encyclopedia of Mathematics and its Applications, 152 (Cambridge University Press, Cambridge, 2014).Google Scholar
de Bouard, A. and Debussche, A., ‘The stochastic nonlinear Schrödinger equation in H 1’, Stoch. Anal. Appl. 21(1) (2003), 97126.Google Scholar
de Bouard, A., Debussche, A. and Tsutsumi, Y., ‘Periodic solutions of the Korteweg–de Vries equation driven by white noise’, SIAM J. Math. Anal. 36(3) (2004–2005), 815855.Google Scholar
Falkovich, G., Kolokolov, I., Lebedev, V., Mezentsev, V. and Turitsyn, S., ‘Non-Gaussian error probability in optical soliton transmission’, Physica D 195(1–2) (2004), 128.Google Scholar
Falkovich, G., Kolokolov, I., Lebedev, V. and Turitsyn, S., ‘Statistics of soliton-bearing systems with additive noise’, Phys. Rev. E 63 (2001), 025601.10.1103/PhysRevE.63.025601Google Scholar
Ginibre, J., Tsutsumi, Y. and Velo, G., ‘On the Cauchy problem for the Zakharov system’, J. Funct. Anal. 151(2) (1997), 384436.Google Scholar
Grünrock, A., ‘An improved local well-posedness result for the modified KdV equation’, Int. Math. Res. Not. IMRN 2004(61) (2004), 32873308.Google Scholar
Grünrock, A. and Herr, S., ‘Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data’, SIAM J. Math. Anal. 39(6) (2008), 18901920.Google Scholar
Guo, Z. and Oh, T., ‘Non-existence of solutions for the periodic cubic nonlinear Schrödinger equation below L 2’, Int. Math. Res. Not. IMRN 2018(6) (2018), 16561729.Google Scholar
Hairer, M., ‘A theory of regularity structures’, Invent. Math. 198(2) (2014), 269504.Google Scholar
Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers, 5th edn (The Clarendon Press–Oxford University Press, New York, 1979).Google Scholar
Hytönen, T., van Neerven, J., Veraar, M. C. and Weis, L., Analysis in Banach Spaces. Vol. II: Probabilistic Methods and Operator Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics, 67 (Springer, Cham, 2017).Google Scholar
Killip, R., Vişan, M. and Zhang, X., ‘Low regularity conservation laws for integrable PDE’, Geom. Funct. Anal. 28(4) (2018), 10621090.Google Scholar
Kishimoto, N., ‘A remark on norm inflation for nonlinear Schrödinger equations’, Commun. Pure Appl. Anal. 18 (2019), 13751402.Google Scholar
Molinet, L., ‘On ill-posedness for the one-dimensional periodic cubic Schrödinger equation’, Math. Res. Lett. 16(1) (2009), 111120.Google Scholar
Mourrat, J.-C. and Weber, H., ‘The dynamic 𝛷34 model comes down from infinity’, Comm. Math. Phys. 356 (2017), 673753.Google Scholar
Newell, A. and Moloney, J., Nonlinear Optics, Advanced Topics in the Interdisciplinary Mathematical Sciences (Addison-Wesley Advanced Book Program, Redwood City, CA, 1992).Google Scholar
Oh, T., ‘Periodic stochastic Korteweg–de Vries equation with additive space–time white noise’, Anal. PDE 2(3) (2009), 281304.Google Scholar
Oh, T., ‘A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces’, Funkcial. Ekvac. 60 (2017), 259277.Google Scholar
Oh, T., Pocovnicu, O. and Wang, Y., ‘On the stochastic nonlinear Schrödinger equations with non-smooth additive noise’, Kyoto J. Math., to appear.Google Scholar
Oh, T., Quastel, J. and Sosoe, P., ‘Global dynamics for the stochastic KdV equation with white noise as initial data’, in preparation.Google Scholar
Oh, T., Quastel, J. and Valkó, B., ‘Interpolation of Gibbs measures and white noise for Hamiltonian PDE’, J. Math. Pures Appl. 97(4) (2012), 391410.Google Scholar
Oh, T. and Sulem, C., ‘On the one-dimensional cubic nonlinear Schrödinger equation below L 2’, Kyoto J. Math. 52(1) (2012), 99115.Google Scholar
Oh, T. and Thomann, L., ‘A pedestrian approach to the invariant Gibbs measure for the 2-d defocusing nonlinear Schrödinger equations’, Stoch. Partial Differ. Equ. Anal. Comput. 6 (2018), 397445.Google Scholar
Oh, T., Tzvetkov, N. and Wang, Y., ‘Solving the 4NLS with white noise initial data’, Preprint. 2019, arXiv:1902.06169 [math.AP].Google Scholar
Oh, T. and Wang, Y., ‘On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle’, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 64(1) (2018), 5384.Google Scholar
Oh, T. and Wang, Y., ‘Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces’, Forum Math. Sigma 6 (2018), e5, 80 pp.Google Scholar
Oh, T. and Wang, Y., ‘Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces’, Preprint, 2018, arXiv:1806.08761 [math.AP].Google Scholar
Oh, T. and Wang, Y., ‘Normal form approach to the one-dimensional periodic cubic nonlinear Schrödinger equation in almost critical Fourier–Lebesgue spaces’, Preprint, arXiv:1811.04868 [math.AP].Google Scholar
Roynette, B., ‘Mouvement brownien et espaces de Besov’, Stoch. Stoch. Rep. 43(3–4) (1993), 221260 (in French).Google Scholar
Simon, B., The P (𝜑)2 Euclidean (Quantum) Field Theory, Princeton Series in Physics (Princeton University Press, Princeton, NJ, 1974).Google Scholar
van Neerven, J. and Weis, L., ‘Stochastic integration of functions with values in a Banach space’, Studia Math. 166(2) (2005), 131170.Google Scholar
Yousefi, M. I. and Kschischang, F. R., ‘Information transmission using the nonlinear Fourier transform, Part I: Mathematical tools’, IEEE Trans. Inform. Theory 60 (2014), 43124328.Google Scholar