Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T19:54:38.192Z Has data issue: false hasContentIssue false

TWO-SIDED ASYMPTOTIC BOUNDS FOR THE COMPLEXITY OF SOME CLOSED HYPERBOLIC THREE-MANIFOLDS

Published online by Cambridge University Press:  01 April 2009

SERGEI MATVEEV
Affiliation:
Chelyabinsk State University, Chelyabinsk 454021, Russia (email: matveev@csu.ru)
CARLO PETRONIO*
Affiliation:
Dipartimento di Matematica Applicata, Università di Pisa, Via Filippo Buonarroti 1C, 56127 Pisa, Italy (email: petronio@dm.unipi.it)
ANDREI VESNIN
Affiliation:
Sobolev Institute of Mathematics, Novosibirsk 630090, Russia (email: vesnin@math.nsc.ru)
*
For correspondence; e-mail: petronio@dm.unipi.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We establish two-sided bounds for the complexity of two infinite series of closed orientable three-dimensional hyperbolic manifolds, the Löbell manifolds and the Fibonacci manifolds. The manifolds of the two series are indexed by an integer n and the corresponding complexity estimates are both linear in n.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

Footnotes

This work is the result of a collaboration among the three authors carried out in the frame of the INTAS project ‘CalcoMet-GT’ 03-51-3663. The first and the third authors were also supported by the Russian Fund for Fundamental Research, grants 05-01-00293 and 06-01-72014-MSCS.

References

[1]Andreev, E. M., ‘On convex polyhedra in Lobachevskii spaces’, Math. USSR Sb. 10 (1970), 413440.CrossRefGoogle Scholar
[2]Anisov, S., ‘Exact values of complexity for an infinite number of 3-manifolds’, Mosc. Math. J. 5 (2005), 305310.CrossRefGoogle Scholar
[3]Appel, K. and Haken, W., Every Planar Map is Four Colorable, Contemporary Mathematics, 98 (American Mathematical Society, Providence, RI, 1989).CrossRefGoogle Scholar
[4]Benedetti, R. and Petronio, C., Lectures on Hyperbolic Geometry (Springer, Berlin, 1992).CrossRefGoogle Scholar
[5]Conway, J., ‘Advanced problem 5327’, Amer. Math. Monthly 72 (1965), 915 .Google Scholar
[6]Epstein, D. B. A. and Petronio, C., ‘An exposition of Poincaré’s polyhedron theorem’, Enseign. Math. 40 (1994), 113170.Google Scholar
[7]Frigerio, R., Martelli, B. and Petronio, C., ‘Complexity and Heegaard genus of an infinite class of compact 3-manifolds’, Pacific J. Math. 210 (2003), 283297.CrossRefGoogle Scholar
[8]Frigerio, R., Martelli, B. and Petronio, C., ‘Dehn filling of cusped hyperbolic 3-manifolds with geodesic boundary’, J. Differential Geom. 64 (2003), 425455.CrossRefGoogle Scholar
[9]Helling, H., Kim, A. C. and Mennicke, J. L., ‘A geometric study of Fibonacci groups’, J. Lie Theory 8 (1999), 123.Google Scholar
[10]Hilden, H. M., Lozano, M. T. and Montesinos-Amilibia, J. M., ‘The arithmeticity of the figure eight knot orbifolds’, Topology ’90, Columbus, OH, 1990 (de Gruyter, Berlin, 1992), pp. 169183.CrossRefGoogle Scholar
[11]Kellerhals, R., ‘On the volume of hyperbolic polyhedra’, Math. Ann. 285 (1989), 541569.CrossRefGoogle Scholar
[12]Kojima, S., ‘Deformation of hyperbolic 3-cone-manifolds’, J. Differential Geom. 48 (1999), 469516.Google Scholar
[13]Löbell, F., ‘Beispiele geschlossene dreidimensionaler Clifford—Kleinischer Räume negative Krümmung’, Ber. Verh. Sächs. Akad. Lpz., Math. Phys. Kl. 83 (1931), 168174.Google Scholar
[14]Matveev, S. V., ‘The complexity of three-dimensional manifolds and their enumeration in the order of increasing complexity’, Soviet Math. Dokl. 38 (1989), 7578.Google Scholar
[15]Matveev, S. V., ‘Complexity theory of three-dimensional manifolds’, Acta Appl. Math. 19 (1990), 101130.CrossRefGoogle Scholar
[16]Matveev, S. V., Algorithmic Topology and Classification of 3-Manifolds, ACM Monographs, 9 (Springer, New York, 2003).CrossRefGoogle Scholar
[17]Matveev, S. V., ‘Recognition and tabulation of 3-manifolds’, Dokl. Akad. Nauk 400 (2005), 2628 (in Russian).Google Scholar
[18]Matveev, S. V. and Pervova, E., ‘Lower bounds for the complexity of three-dimensional manifolds’, Dokl. Math. 63 (2001), 314315.Google Scholar
[19]Mednykh, A. D. and Vesnin, A. Yu., ‘Hyperbolic volumes of Fibonacci manifolds’, Siberian Math. J. 36 (1995), 235245.Google Scholar
[20]Pervova, E. and Petronio, C., ‘Complexity and T-invariant of Abelian and Milnor groups, and complexity of 3-manifolds’’, Math. Nachr. 281 (2008), 11821195.CrossRefGoogle Scholar
[21]Schwartsman, O. V. and Vinberg, E. B., ‘Discrete groups of motions of spaces of constant curvature’, in: Geometry II: Spaces of Constant Curvature, Encyclopaedia of Mathematical Sciences, 29 (ed. E. B. Vinberg) (Springer, Berlin, 1993), pp. 139248.Google Scholar
[22]Thurston, W. P., ‘The Geometry and Topology of Three-Manifolds’, Mimeographed notes, Princeton, NJ, 1979.Google Scholar
[23]Vesnin, A. Yu., ‘Three-dimensional hyperbolic manifolds of Löbell type’, Siberian Math. J. 28 (1987), 731734.CrossRefGoogle Scholar
[24]Vesnin, A. Yu., ‘Volumes of hyperbolic Löbell manifolds’, Math. Notes 64 (1998), 1723.CrossRefGoogle Scholar