Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-18T14:23:39.075Z Has data issue: false hasContentIssue false

Varieties of topological groups and left adjoint functors

Published online by Cambridge University Press:  09 April 2009

Sidney A. Morris
Affiliation:
University of New South WalesKensington 2033, Australia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In [6] and [2] Markov and Graev introduced their respective concepts of a free topological group. Graev's concept is more general in the sense that every Markov free topological group is a Graev free topological group. In fact, if FG(X) is the Graev free topological group on a topological space X, then it is the Markov free topological group FM(Y) on some space Y if and only if X is disconnected. This, however, does not say how FG(X) and FM(X) are related.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1973

References

[1]Peter, Freyd, Abelian Categories (Harper and Row, New York, 1964).Google Scholar
[2]Graev, M. I., ‘Free topological groups’, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279324, (Russian). English transl., Amer. Math. Soc. Transl. no. 35 (1951). Reprint Amer. Math. Soc. Transl. (1) 8(1962), 305–364.Google Scholar
[3]Hall, C. E., ‘Projective topological groups’, Proc. Amer. Math. Soc. 18 (1967), 425431.CrossRefGoogle Scholar
[4]Hall, C. E., ‘F-projective groups’, Proc. Amer. Math. Soc. 26 (1970), 193195.Google Scholar
[5]Karl, Heinrich Hofmann, ‘Zerfällung topologischer Gruppen’, Math. Z. 84 (1964), 1637.Google Scholar
[6]Markov, A. A., ‘On free topological groups’, C. R. (Doklady) Acad. Sci. URSS, (N.S.) 31 (1941), 299301. Bull. Acad. Sci. URSS Sér. Math. [Izv. Akad. Nauk. SSSR] 9 (1945), 3–64. (Russian-English summary) English Transl. Amer. Math. Soc. Transl. no. 30 (1950), 11–88; reprint Amer. Math. Soc. Transl. (1)8(1962), 195–272.Google Scholar
[7]Sidney, A. Morris, ‘Varieties of topological groups’, Bull. Austral. Math. Soc. 1 (1969), 145160.Google Scholar
[8]Sidney, A. Morris, ‘Varieties of topological groups II’, Bull. Austral. Math. Soc. 2 (1970), 113.Google Scholar
[9]Sidney, A. Morris, ‘Varieties of topological groups III’, Bull. Austral. Math. Soc. 2 (1970), 165178.Google Scholar
[10]Sidney, A. Morris, ‘Free products of topological groups’, Bull. Austral. Math. Soc. 4 (1971), 1729.Google Scholar
[11]Sidney, A. Morris, ‘Free compact abelian groups’, Mat. Časopis. Sloven. Akad. Vied. 22 (1972).Google Scholar
[12]Sidney, A. Morris, ‘Locally compact groups and ß-varieties of topological groups,’ Fund. Math. (to appear).Google Scholar
[13]Hanna, Neumann, Varieties of Groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37, Springer-Verlag, Berlin, Heidelberg, New York, 1967.)Google Scholar
[14]Eric, C. Nummela, ‘The projective dimension of a compact abelian groups’, (to appear).Google Scholar
[15]Eric, C. Nummela, ‘Homological algebra of topological modules’, (to appear).Google Scholar
[16]Ward, F. R., ‘On free and projective topological groups’, Notices Amer. Math. Soc. 17 (1970), 135.Google Scholar